PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bactrevPermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
 
Bacteriol Rev. 1977 March; 41(1): 100–180.
PMCID: PMC413997

Energy conservation in chemotrophic anaerobic bacteria.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (12M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abrams A, Baron C. Reversible attachment of adenosine triphosphatase to streptococcal membranes and the effect of magnesium ions. Biochemistry. 1968 Feb;7(2):501–507. [PubMed]
  • Abrams A, Nolan EA, Jensen C, Smith JB. Tightly bound adenine nucleotide in bacterial membrane ATPase. Biochem Biophys Res Commun. 1973 Nov 1;55(1):22–29. [PubMed]
  • Addanki A, Cahill FD, Sotos JF. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. J Biol Chem. 1968 May 10;243(9):2337–2348. [PubMed]
  • Akagi JM. The participation of a ferredoxin of Clostridium nigrificans in sulfite reduction. Biochem Biophys Res Commun. 1965 Oct 8;21(1):72–77. [PubMed]
  • Akagi JM. Electron carries for the phosphoroclastic reaction of Desulfovibrio desulfuricans. J Biol Chem. 1967 May 25;242(10):2478–2483. [PubMed]
  • Akagi JM, Adams V. Isolation of a bisulfite reductase activity from Desulfotomaculum nigrificans and its identification as the carbon monoxide-binding pigment P582. J Bacteriol. 1973 Oct;116(1):392–396. [PMC free article] [PubMed]
  • Kimmel K. Arbeitssystematik in der Zahntechnik. Quintessenz Zahntech. 1977 Apr;3(4):71–74. [PMC free article] [PubMed]
  • Alberty RA. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J Biol Chem. 1969 Jun 25;244(12):3290–3302. [PubMed]
  • ALLEN SH, KELLERMEYER RW, STJERNHOLM RL, WOOD HG. PURIFICATION AND PROPERTIES OF ENZYMES INVOLVED IN THE PROPIONIC ACID FERMENTATION. J Bacteriol. 1964 Jan;87:171–187. [PMC free article] [PubMed]
  • ALLEN MB, VAN NIEL CB. Experiments on bacterial denitrification. J Bacteriol. 1952 Sep;64(3):397–412. [PMC free article] [PubMed]
  • Altendorf K, Harold FM, Simoni RD. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase. J Biol Chem. 1974 Jul 25;249(14):4587–4593. [PubMed]
  • Altendorf K, Hirata H, Harold FM. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. J Biol Chem. 1975 Feb 25;250(4):1405–1412. [PubMed]
  • Ambler RP. The amino acid sequence of cytochrome c-551.5 (Cytochrome c(7)) from the green photosynthetic bacterium Chloropseudomonas ethylica. FEBS Lett. 1971 Nov 1;18(2):351–353. [PubMed]
  • ANDERSON RL, ORDAL EJ. CO2-dependent fermentation of glucose by Cytophaga succinicans. J Bacteriol. 1961 Jan;81:139–146. [PMC free article] [PubMed]
  • Anderson RL, Wood WA. Carbohydrate metabolism in microorganisms. Annu Rev Microbiol. 1969;23:539–578. [PubMed]
  • Andreesen JR, El Ghazzawi E, Gottschalk G. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch Mikrobiol. 1974 Mar 4;96(2):103–118. [PubMed]
  • Andreesen JR, Gottschalk G. The occurrence of a modified Entner-doudoroff pathway in Clostridium aceticum. Arch Mikrobiol. 1969;69(2):160–170. [PubMed]
  • Andreesen JR, Gottschalk G, Schlegel HG. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol. 1970;72(2):154–174. [PubMed]
  • Andreesen JR, Ljungdahl LG. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol. 1973 Nov;116(2):867–873. [PMC free article] [PubMed]
  • Andreesen JR, Ljungdahl LG. Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties. J Bacteriol. 1974 Oct;120(1):6–14. [PMC free article] [PubMed]
  • Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 . J Bacteriol. 1973 May;114(2):743–751. [PMC free article] [PubMed]
  • ANDREW IG, MORRIS JG. THE BIOSYNTHESIS OF ALANINE BY CLOSTRIDIUM KLUYVERI. Biochim Biophys Acta. 1965 Jan 4;97:176–179. [PubMed]
  • Asghar SS, Levin E, Harold FM. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force. J Biol Chem. 1973 Aug 10;248(15):5225–5233. [PubMed]
  • Aspen AJ, Wolin MJ. Solubilization and reconstitution of a particulate hydrogenase from Vibrio succinogenes. J Biol Chem. 1966 Sep 25;241(18):4152–4156. [PubMed]
  • Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. [PubMed]
  • Atkinson DE. Regulation of enzyme function. Annu Rev Microbiol. 1969;23:47–68. [PubMed]
  • Aue BJ, Deiel RH. Fumarate reductase activity of Streptococcus faecalis. J Bacteriol. 1967 Jun;93(6):1770–1776. [PMC free article] [PubMed]
  • Baginsky ML, Huennekens FM. Electron transport function of a heat-stable protein and a flavoprotein in the oxidative decarboxylation of glycine by Peptococcus glycinophilus. Biochem Biophys Res Commun. 1966 Jun 13;23(5):600–605. [PubMed]
  • Baker JJ, Jeng I, Barker HA. Purification and properties of L-erythro-3,5-diaminohexanoate dehydrogenase from a lysine-fermenting Clostridium. J Biol Chem. 1972 Dec 10;247(23):7724–7734. [PubMed]
  • BALDWIN RL, MILLIGAN LP. ELECTRON TRANSPORT IN PEPTOSTREPTOCOCCUS ELSDENII. Biochim Biophys Acta. 1964 Dec 23;92:421–432. [PubMed]
  • Baltscheffsky H, Baltscheffsky M. Electron transport phosphorylation. Annu Rev Biochem. 1974;43(0):871–897. [PubMed]
  • Banks BE. Thermodynamics and biology. Chem Br. 1969 Nov;5(11):514–519. [PubMed]
  • Banks BE, Vernon CA. Reassessment of the role of ATP in vivo. J Theor Biol. 1970 Nov;29(2):301–326. [PubMed]
  • Barker HA. Citramalate lyase of Clostridium tetanomorphum. Arch Mikrobiol. 1967;59(1):4–12. [PubMed]
  • Baron C, Abrams A. Isolation of a bacterial membrane protein, nectin, essential for the attachment of adenosine triphosphatase. J Biol Chem. 1971 Mar 10;246(5):1542–1544. [PubMed]
  • Barton LL, Le Gall J, Peck HD., Jr Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1036–1042. [PubMed]
  • Bauchop T. Inhibition of rumen methanogenesis by methane analogues. J Bacteriol. 1967 Jul;94(1):171–175. [PMC free article] [PubMed]
  • BAUCHOP T, ELSDEN SR. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. [PubMed]
  • BAUM RH, DOLIN MI. ISOLATION OF 2-SOLANESYL-1,4-NAPHTHOQUINONE FROM STREPTOCOCCUS FAECALIS, 10 CL. J Biol Chem. 1965 Aug;240:3425–3433. [PubMed]
  • Bell GR, LeGall L, Peck HD. Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J Bacteriol. 1974 Nov;120(2):994–997. [PMC free article] [PubMed]
  • BERGMEYER HU, HOLZ G, KLOTZSCH H, LANG G. PHOSPHOTRANSACETYLASE AUS CLOSTRIDIUM KLUYVERI. ZUECHTUNG DES BACTERIUMS, ISOLIERUNG, KRISTALLISATION UND EIGENSCHAFTEN DES ENZYMS. Biochem Z. 1963;338:114–121. [PubMed]
  • Berndt H, Schlegel HG. Kinetics and properties of beta-ketothiolase from Clostridium pasteurianum. Arch Microbiol. 1975 Mar 12;103(1):21–30. [PubMed]
  • Biebl H, Pfennig Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol. 1977 Feb 4;112(1):115–117. [PubMed]
  • Blaylock BA. Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri. Arch Biochem Biophys. 1968 Mar 20;124(1):314–324. [PubMed]
  • BLAYLOCK BA, STADTMAN TC. Biosynthesis of methane from the methyl moiety of methylcobalamin. Biochem Biophys Res Commun. 1963 Apr 2;11:34–38. [PubMed]
  • Blaylock BA, Stadtman TC. Methane biosynthesis by Methanosarcina barkeri. Properties of the soluble enzyme system. Arch Biochem Biophys. 1966 Sep 26;116(1):138–152. [PubMed]
  • BOJANOWSKI R, GAUDY E, VALENTINE RC, WOLFE RS. OXAMIC TRANSCARBAMYLASE OF STREPTOCOCCUS ALLANTOICUS. J Bacteriol. 1964 Jan;87:75–80. [PMC free article] [PubMed]
  • Bongers L. Yields of Hydrogenomonas eutropha from growth on succinate and fumarate. J Bacteriol. 1970 May;102(2):598–599. [PMC free article] [PubMed]
  • Boonstra J, Huttunen MT, Konings WN. Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem. 1975 Sep 10;250(17):6792–6798. [PubMed]
  • Boos W. Bacterial transport. Annu Rev Biochem. 1974;43(0):123–146. [PubMed]
  • Booth IR, Morris JG. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 1975 Nov 15;59(2):153–157. [PubMed]
  • Bothe H, Falkenberg B, Nolteernsting U. Properties and function of the pyruvate: ferredoxin oxidoreductase from the blue-green alga Anabaena cylindrica. Arch Mikrobiol. 1974 Mar 28;96(4):291–304. [PubMed]
  • Boxer DH, Clegg RA. A transmembrane location for the proton-translocating reduced ubiquinone leads to nitrate reductase segment of the respiration chain of Escherichia coli. FEBS Lett. 1975 Dec 1;60(1):54–57. [PubMed]
  • Boyer PD. Energy transduction and proton translocation by adenosine triphosphatases. FEBS Lett. 1975 Feb 1;50(2):91–94. [PubMed]
  • Boyer PD, Cross RL, Momsen W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2837–2839. [PubMed]
  • Brand MD, Chen CH, Lehninger AL. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem. 1976 Feb 25;251(4):968–974. [PubMed]
  • Bray RC, Vincent SP, Lowe DJ, Clegg RA, Garland PB. Electron-paramagnetic-resonance studies on the molybdenum of nitrate reductase from Escherichia coli K12. Biochem J. 1976 Apr 1;155(1):201–203. [PubMed]
  • Bresters TW, Krul J, Scheepens PC, Veeger C. Phosphotransacetylase associated with the pyruvate dehydrogenase complex from the nitrogen fixing Azotobacter vinelandii. FEBS Lett. 1972 May 15;22(3):305–309. [PubMed]
  • Brill WJ, Wolfe RS. Acetaldehyde oxidation by methanobacillus--a new ferredoxin-dependent reaction. Nature. 1966 Oct 15;212(5059):253–255. [PubMed]
  • Brockman HL, Wood WA. Electron-transferring flavoprotein of Peptostreptococcus elsdenii that functions in the reduction of acrylyl-coenzyme A. J Bacteriol. 1975 Dec;124(3):1447–1453. [PMC free article] [PubMed]
  • Brockman HL, Wood WA. D-Lactate dehydrogenase of Peptostreptococcus elsdenii. J Bacteriol. 1975 Dec;124(3):1454–1461. [PMC free article] [PubMed]
  • Brown MS, Akagi JM. Purification of acetokinase from Desulfovibrio desulfuricans. J Bacteriol. 1966 Oct;92(4):1273–1274. [PMC free article] [PubMed]
  • Brown TD, Pereira CR, Stormer FC. Studies of the acetate kinase-phosphotransacetylase and the butanediol-forming systems in Aerobacter aerogenes. J Bacteriol. 1972 Dec;112(3):1106–1111. [PMC free article] [PubMed]
  • Bryant MP, McBride BC, Wolfe RS. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J Bacteriol. 1968 Mar;95(3):1118–1123. [PMC free article] [PubMed]
  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol. 1967;59(1):20–31. [PubMed]
  • Buchanan BB, Pine L. Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii. J Gen Microbiol. 1967 Feb;46(2):225–236. [PubMed]
  • Buckel W, Barker HA. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974 Mar;117(3):1248–1260. [PMC free article] [PubMed]
  • Burke KA, Lascelles J. Nitrate reductase system in Staphylococcus aureus wild type and mutants. J Bacteriol. 1975 Jul;123(1):308–316. [PMC free article] [PubMed]
  • BURTON K. The free energy change associated with the hydrolysis of the thiol ester bond of acetyl coenzyme A. Biochem J. 1955 Jan;59(1):44–46. [PubMed]
  • KREBS HA, KORNBERG HL, BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed]
  • BURTON K, KREBS HA. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J. 1953 Apr;54(1):94–107. [PubMed]
  • BURTON RM, STADTMAN ER. The oxidation of acetaldehyde to acetyl coenzyme A. J Biol Chem. 1953 Jun;202(2):873–890. [PubMed]
  • BURTON K, WILSON TH. The free-energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol 1-phosphate. Biochem J. 1953 Apr;54(1):86–94. [PubMed]
  • Caldwell DR, White DC, Bryant MP, Doetsch RN. Specificity of the heme requirement for growth of Bacteroides ruminicola. J Bacteriol. 1965 Dec;90(6):1645–1654. [PMC free article] [PubMed]
  • Campbell LL, Postgate JR. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev. 1965 Sep;29(3):359–363. [PMC free article] [PubMed]
  • Campbell F, Yates MG. Pyruvate metabolism and nitrogen fixation in Azotobacter. FEBS Lett. 1973 Dec 1;37(2):203–206. [PubMed]
  • Carmeli C. Proton translocation induced by ATPase activity in chloroplasts. FEBS Lett. 1970 Apr 16;7(3):297–300. [PubMed]
  • Chambers LA, Trudinger PA. Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol. 1975 Jul;123(1):36–40. [PMC free article] [PubMed]
  • CHANG JP, LASCELLES J. NITRATE REDUCTASE IN CELL-FREE EXTRACTS OF A HAEMIN-REQUIRING STRAIN OF STAPHYLOCOCCUS AUREUS. Biochem J. 1963 Dec;89:503–510. [PubMed]
  • Chatelain R. Réduction des nitrites par Alcaligenes odorans var. viridans. Ann Inst Pasteur (Paris) 1969 Apr;116(4):498–500. [PubMed]
  • Cheeseman P, Toms-Wood A, Wolfe RS. Isolation and properties of a fluorescent compound, factor 420 , from Methanobacterium strain M.o.H. J Bacteriol. 1972 Oct;112(1):527–531. [PMC free article] [PubMed]
  • CHEN SL. ENERGY REQUIREMENT FOR MICROBIAL GROWTH. Nature. 1964 Jun 13;202:1135–1136. [PubMed]
  • Chiba S, Ishimoto M. Ferredoxin-linked nitrate reductase from Clostridium perfringens. J Biochem. 1973 Jun;73(6):1315–1318. [PubMed]
  • Chirpich TP, Zappia V, Costilow RN, Barker HA. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J Biol Chem. 1970 Apr 10;245(7):1778–1789. [PubMed]
  • Clarke DJ, Morris JG. Partial purification of a dicyclohexylcarbodi-imide-sensitive membrane adenosine triphosphatase complex from the obligately anaerobic bacterium Clostridium Pasteurianum. Biochem J. 1976 Mar 15;154(3):725–729. [PubMed]
  • Clegg RA. Purification and some properties of nitrate reductase (EC 1.7.99.4) from Escherichia coli K12. Biochem J. 1976 Mar 1;153(3):533–541. [PubMed]
  • Cockrell RS, Harris EJ, Pressman BC. Synthesis of ATP driven by a potassium gradient in mitochondria. Nature. 1967 Sep 30;215(5109):1487–1488. [PubMed]
  • Cole JA. Cytochrome c552 and nitrite reduction in Escherichia coli. Biochim Biophys Acta. 1968 Oct 1;162(3):356–368. [PubMed]
  • Cole JS, 3rd, Aleem MI. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3571–3575. [PubMed]
  • Cole JA, Ward FB. Nitrite reductase-deficient mutants of Escherichia coli K12. J Gen Microbiol. 1973 May;76(1):21–29. [PubMed]
  • Cox GB, Gibson F. Studies on electron transport and energy-linked reactions using mutants of Escherichia coli. Biochim Biophys Acta. 1974 Apr 30;346(1):1–25. [PubMed]
  • Cox GB, Newton NA, Gibson F, Snoswell AM, Hamilton JA. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. [PubMed]
  • Cox CD, Jr, Payne WJ. Separation of soluble denitrifying enzymes and cytochromes from Pseudomonas perfectomarinus. Can J Microbiol. 1973 Jul;19(7):861–872. [PubMed]
  • CRANE RK. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed]
  • Crane RK. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed]
  • Cross RL, de Sousa JT, Packer L. Thiophosphate labelling of mitochondria-lack of evidence for an acyl-phosphate intermediate in oxidative phosphorylation. J Bioenerg. 1974;6(1):21–25. [PubMed]
  • Czerkawski JW, Harfoot CG, Breckenridge G. The relationship between methane production and concentrations of hydrogen in the aqueous and gaseous phases during rumen fermentation in vitro. J Appl Bacteriol. 1972 Dec;35(4):537–551. [PubMed]
  • Daesch G, Mortenson LE. Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol. 1968 Aug;96(2):346–351. [PMC free article] [PubMed]
  • DAWES EA, FOSTER SM. The formation of ethanol in Escherichia coli. Biochim Biophys Acta. 1956 Nov;22(2):253–265. [PubMed]
  • Decker K, Jungermann K, Thauer RK. Energy production in anaerobic organisms. Angew Chem Int Ed Engl. 1970 Feb;9(2):138–158. [PubMed]
  • Decker K, Pfitzer S. Determination of steady-state concentrations of adenine nucleotides in growing C. kluyveri cells by biosynthetic labeling. Anal Biochem. 1972 Dec;50(2):529–539. [PubMed]
  • De Groot GN, Stouthamer AH. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate-resistant mutants. Arch Mikrobiol. 1969;66(3):220–233. [PubMed]
  • De Groot GN, Stouthamer AH. Regulation of reductase formation in Proteus mirabilis. II. Influence of growth with azide and of haem deficiency on nitrate reductase formation. Biochim Biophys Acta. 1970 Jun;208(3):414–427. [PubMed]
  • Deibel RH. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. [PMC free article] [PubMed]
  • DEIBEL RH, KVETKAS MJ. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS. J Bacteriol. 1964 Oct;88:858–864. [PMC free article] [PubMed]
  • Dekker EE, Barker HA. Identification and cobamide coenzyme-dependent formation of 3,5-diaminohexanoic acid, an intermediate in lysine fermentation. J Biol Chem. 1968 Jun 25;243(12):3232–3237. [PubMed]
  • Shahed AR, Miller AR, Allmann DW. Influence of NaF and Na2PO3F(MFP) on glucose metabolism in rat hepatocytes. Biochem Biophys Res Commun. 1979 Nov 28;91(2):583–591. [PMC free article] [PubMed]
  • DELWICHE CC. Production and utilization of nitrous oxide by Pseudomonas denitrificans. J Bacteriol. 1959 Jan;77(1):55–59. [PMC free article] [PubMed]
  • de Vries W, Gerbrandy SJ, Stouthamer AH. Carbohydrate metabolism in Bifidobacterium bifidum. Biochim Biophys Acta. 1967 Apr 25;136(3):415–425. [PubMed]
  • de Vries W, Kapteijn WM, van der Beek EG, Stouthamer AH. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. [PubMed]
  • de Vries W, van Wyck-Kapteyn WM, Stouthamer AH. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J Gen Microbiol. 1973 May;76(1):31–41. [PubMed]
  • de Vries W, van Wijck-Kapteyn WM, Oosterhuis SK. The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J Gen Microbiol. 1974 Mar;81(1):69–78. [PubMed]
  • De Weer P, Lowe AG. Myokinase equilibrium. An enzymatic method for the determination of stability constants of magnesium complexes with adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate in media of high ionic strength. J Biol Chem. 1973 Apr 25;248(8):2829–2835. [PubMed]
  • De Zoeten LW, Posthuma D, Tipker J. Intermediary metabolism of the liver fluke Fasciola hepatica, I. Biosynthesis of propionic acid. Hoppe Seylers Z Physiol Chem. 1969 Jun;350(6):683–690. [PubMed]
  • Dietzler DN, Lais CJ, Magnani JL, Leckie MP. Maintenance of the energy charge in the presence of large decreases in the total adenylate pool of Escherichia coli and concurrent changes in glucose-6-p, fructose-p2 and glycogen synthesis. Biochem Biophys Res Commun. 1974 Oct 8;60(3):875–881. [PubMed]
  • Douglas MW, Ward FB, Cole JA. The formate hydrogenlyase activity of cytochrome c552-deficient mutants of Escherichia coli K12. J Gen Microbiol. 1974 Feb;80(2):557–560. [PubMed]
  • Schult H. Warum ist der Chef heute "grantig"? Quintessenz J. 1977 Jul;7(7):13–14. [PMC free article] [PubMed]
  • Drachev LA, Jasaitis AA, Kaulen AD, Kondrashin AA, Liberman EA, Nemecek IB, Ostroumov SA, Semenov AYu, Skulachev VP. Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. Nature. 1974 May 24;249(455):321–324. [PubMed]
  • Drake HL, Akagi JM. Product analysis of bisulfite reductase activity isolated from Desulfovibrio vulgaris. J Bacteriol. 1976 May;126(2):733–738. [PMC free article] [PubMed]
  • Dubourdieu M, Le Gall J. Chemical study of two flavodoxins extracted from sulfate reducing bacteria. Biochem Biophys Res Commun. 1970 Mar 12;38(5):965–972. [PubMed]
  • Eagar RG, Jr, Herbst MM, Barker HA, Richards JH. Mechanism of action of coenzyme B 12 . Hydrogen transfer in the isomerization of -methylaspartate to glutamate. Biochemistry. 1972 Jan 18;11(2):253–264. [PubMed]
  • Eisenstein KK, Wang JH. Conversion of light to chemical free energy. I. Porphyrin-sensitized photoreduction of ferredoxin by glutathione. J Biol Chem. 1969 Apr 10;244(7):1720–1728. [PubMed]
  • El Ghazzawi E. Neuisolierung von Clostridium aceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch Mikrobiol. 1967 May 17;57(1):1–19. [PubMed]
  • ELSDEN SR, GILCHRIST FM, LEWIS D, VOLCANI BE. Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol. 1956 Nov;72(5):681–689. [PMC free article] [PubMed]
  • Engel PC, Massey V. The purification and properties of butyryl-coenzyme A dehydrogenase from Peptostreptococcus elsdenii. Biochem J. 1971 Dec;125(3):879–887. [PubMed]
  • Engel PC, Massey V. Green butyryl-coenzyme A dehydrogenase. An enzyme-acyl-coenzyme A complex. Biochem J. 1971 Dec;125(3):889–902. [PubMed]
  • Enoch HG, Lester RL. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli. J Bacteriol. 1972 Jun;110(3):1032–1040. [PMC free article] [PubMed]
  • Enoch HG, Lester RL. The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1234–1241. [PubMed]
  • Enoch HG, Lester RL. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed]
  • ENTNER N, DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed]
  • Evans HJ, Wood HG. The mechanism of the pyruvate, phosphate dikinase reaction. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1448–1453. [PubMed]
  • Faust PJ, Vandemark PJ. Phosphorylation coupled to NADH oxidation with fumarate in Streptococcus faecalis 10Cl. Arch Biochem Biophys. 1970 Apr;137(2):392–398. [PubMed]
  • Ferry JG, Wolfe RS. Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol. 1976 Feb;107(1):33–40. [PubMed]
  • FEWSON CA, NICHOLAS DJ. Nitrate reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:335–349. [PubMed]
  • FINA LR, SINCHER HJ, DECOU DF. Evidence for production of methane from formic acid by direct reduction. Arch Biochem Biophys. 1960 Dec;91:159–162. [PubMed]
  • Flodgaard H, Fleron P. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem. 1974 Jun 10;249(11):3465–3474. [PubMed]
  • Forget P. Les nitrate-réductases bactériennes. Solubilisation, purification et propriétés de l'enzyme A de Micrococcus denitrificans. Eur J Biochem. 1971 Feb 1;18(3):442–450. [PubMed]
  • Forget P. The bacterial nitrate reductases. Solubilization, purification and properties of the enzyme A of Escherichia coli K 12. Eur J Biochem. 1974 Mar 1;42(2):325–332. [PubMed]
  • FORGET P, PICHINOTY F. INFLUENCE DE LA RESPIRATION ANA'EROBIE DU NITRATE ET DU FUMARATE SUR LE M'ETABOLISME FERMENTAIRE D'AEROBACTER AEROGENES. Biochim Biophys Acta. 1964 Feb 10;82:441–444. [PubMed]
  • Forrest WW. Adenosine triphosphate pool during the growth cycle in Streptococcus faecalis. J Bacteriol. 1965 Oct;90(4):1013–1018. [PMC free article] [PubMed]
  • Forrest WW, Walker DJ. The generation and utilization of energy during growth. Adv Microb Physiol. 1971;5:213–274. [PubMed]
  • Fujita T, Sato R. Studies on soluble cytochromes in Enterobacteriaceae. IV. Possible involvement of cytochrome c-552 in anaerobic nitrite metabolism. J Biochem. 1966 Dec;60(6):691–700. [PubMed]
  • Garland PB, Downie JA, Haddock BA. Proton translocation and the respiratory nitrate reductase of Escherichia coli. Biochem J. 1975 Dec;152(3):547–559. [PubMed]
  • GASTON LW, STADTMAN ER. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J Bacteriol. 1963 Feb;85:356–362. [PMC free article] [PubMed]
  • Pitko S. Komitea esittä: työntekijöille opintovapaata asteittain. Sairaanhoitaja. 1978 Mar 21;54(6):16–17. [PMC free article] [PubMed]
  • Van Gent-Ruijters ML, DeVries W, Southamer AH. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum. J Gen Microbiol. 1975 May;88(1):36–48. [PubMed]
  • GEST H. Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev. 1954 Mar;18(1):43–73. [PMC free article] [PubMed]
  • Ghambeer RK, Wood HG, Schulman M, Ljungdahl L. Total synthesis of acetate from CO2. 3. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate, and methyl-B12 by Clostridium thermoaceticum. Arch Biochem Biophys. 1971 Apr;143(2):471–484. [PubMed]
  • GIBBONS RJ, ENGLE LP. VITAMIN K COMPOUNDS IN BACTERIA THAT ARE OBLIGATE ANAEROBES. Science. 1964 Dec 4;146(3649):1307–1309. [PubMed]
  • Glynn IM. Involvement of a membrane potential in the synthesis of ATP by mitochondria. Nature. 1967 Dec 30;216(5122):1318–1319. [PubMed]
  • Goldner AM. Sodium-dependent sugar transport in the intestine. Metabolism. 1973 May;22(5):649–656. [PubMed]
  • Goldner AM, Schultz SG, Curran PF. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. [PMC free article] [PubMed]
  • Galivan JH, Allen SH. Methylmalonyl coenzyme A decarboxylase. Its role in succinate decarboxylation by Micrococcus lactilyticus. J Biol Chem. 1968 Mar 25;243(6):1253–1261. [PubMed]
  • Gottwald M, Andreesen JR, LeGall J, Ljungdahl LG. Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J Bacteriol. 1975 Apr;122(1):325–328. [PMC free article] [PubMed]
  • GRAY CT, GEST H. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN. Science. 1965 Apr 9;148(3667):186–192. [PubMed]
  • GRAY CT, WIMPENNY JW, HUGHES DE, RANLETT M. A soluble c-type cytochrome from anaerobically grown Escherichia coli and various Enterobacteriaceae. Biochim Biophys Acta. 1963 Jan 8;67:157–160. [PubMed]
  • Griniuviene B, Chmieliauskaite V, Grinius L. Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump. Biochem Biophys Res Commun. 1974 Jan;56(1):206–213. [PubMed]
  • Griniuviene B, Chmieliauskaite V, Melvydas V, Dzheja P, Grinius L. Conversion of Escherichia coli cell-produced metabolic energy into electric form. J Bioenerg. 1975 Mar;7(1):17–38. [PubMed]
  • GROSSMAN JP, POSTGATE JR. The metabolism of malate and certain other compounds by Desulphovibrio desulphuricans. J Gen Microbiol. 1955 Jun;12(3):429–445. [PubMed]
  • Guarraia LJ, Peck HD., Jr Dinitrophenol-stimulated adenosine triphosphatase activity in extracts of Desulfovibrio gigas. J Bacteriol. 1971 Jun;106(3):890–895. [PMC free article] [PubMed]
  • Guynn RW, Veech RL. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. J Biol Chem. 1973 Oct 25;248(20):6966–6972. [PubMed]
  • Guynn RW, Gelberg HJ, Veech RL. Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J Biol Chem. 1973 Oct 25;248(20):6957–6965. [PubMed]
  • Guynn RW, Webster LT, Jr, Veech RL. Equilibrium constants of the reactions of acetyl coenzyme A synthetase and the hydrolysis of adenosine triphosphate to adenosine monophosphate and inorganic pyrophosphate. J Biol Chem. 1974 May 25;249(10):3248–3254. [PubMed]
  • Haaker H, Bresters TW, Veeger C. Relation between anaerobic ATP synthesis from pyruvate and nitrogen fixation in Azotobacter vinelandii. FEBS Lett. 1972 Jun 15;23(2):160–162. [PubMed]
  • HAAS D. PHOSPHORYLATION COUPLED TO THE OXIDATION OF NADH BY FUMARATE IN DIGITONIN FRAGMENTS OF BEEF-HEART MITOCHONDRIA. Biochim Biophys Acta. 1964 Dec 23;92:433–439. [PubMed]
  • Haddock BA, Jones CW. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. [PMC free article] [PubMed]
  • Haddock BA, Kendall-Tobias MW. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence. Biochem J. 1975 Dec;152(3):655–659. [PubMed]
  • HADJIPETROU LP, STOUTHAMER AH. ENERGY PRODUCTION DURING NITRATE RESPIRATION BY AEROBACTER AEROGENES. J Gen Microbiol. 1965 Jan;38:29–34. [PubMed]
  • HAGER LP, LIPMANN F. Coupling between phosphorylation and flavin adenine dinucleotide reduction with the pyruvate oxidase of L. delbrueckii enzyme. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1768–1772. [PubMed]
  • Hansen HG, Henning U. Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta. 1966 Aug 10;122(2):355–358. [PubMed]
  • HARDMAN JK, STADTMAN TC. Metabolism of omega-amino acids. I. Fermentation of gamma-aminobutyric acid by Clostridium aminobutyricum n. sp. J Bacteriol. 1960 Apr;79:544–548. [PMC free article] [PubMed]
  • HARDMAN JK, STADTMAN TC. Metabolism of amega-amino acids. III. Mechanism of conversion of gamma-aminobutyrate to gamma-hydroxybutryate by Clostridium aminobutyricum. J Biol Chem. 1963 Jun;238:2081–2087. [PubMed]
  • HARDMAN JK, STADTMAN TC. METABOLISM OF OMEGA-AMINO ACIDS. V. ENERGETICS OF THE GAMMA-AMINOBUTYRATE FERMENTATION BY CLOSTRIDIUM AMINOBUTYRICUM. J Bacteriol. 1963 Jun;85:1326–1333. [PMC free article] [PubMed]
  • Harold FM. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. [PMC free article] [PubMed]
  • Harold FM, Levin E. Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis. J Bacteriol. 1974 Mar;117(3):1141–1148. [PMC free article] [PubMed]
  • Harold FM, Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J Membr Biol. 1972;8(1):27–44. [PubMed]
  • Harold FM, Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membr Biol. 1972;8(1):45–62. [PubMed]
  • Harold FM, Spitz E. Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis. J Bacteriol. 1975 Apr;122(1):266–277. [PMC free article] [PubMed]
  • Harold FM, Pavlasová E, Baarda JR. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Biochim Biophys Acta. 1970;196(2):235–244. [PubMed]
  • HART LT, LARSON AD, MCCLESKEY CS. DENITRIFICATION BY CORYNEBACTERIUM NEPHRIDII. J Bacteriol. 1965 Apr;89:1104–1108. [PMC free article] [PubMed]
  • Hasan SM, Hall JB. The physiological function of nitrate reduction in Clostridium perfringens. J Gen Microbiol. 1975 Mar;87(1):120–128. [PubMed]
  • Haschke RH, Campbell LL. Purification and properties of a hydrogenase from Desulfovibrio vulgaris. J Bacteriol. 1971 Jan;105(1):249–258. [PMC free article] [PubMed]
  • Hatchikian EC. On the role of menaquinone-6 in the electron transport of hydrogen: fumarate reductase system in the strict anaerobe Desulfovibrio gigas. J Gen Microbiol. 1974 Mar;81(1):261–266. [PubMed]
  • Hatchikian EC, Le Gall J. Etude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-réductrices. I. Etude de l'oxydation enzymatique du fumarate en acétate. Ann Inst Pasteur (Paris) 1970 Feb;118(2):125–142. [PubMed]
  • Hatchikian EC, Le Gall J. Evidence for the presence of a b-type cytochrome in the sulfate-reducing bacterium Desulfovibrio gigas, and its role in the reduction of fumarate by molecular hydrogen. Biochim Biophys Acta. 1972 Jun 23;267(3):479–484. [PubMed]
  • HEATH EC, HURWITZ J, HORECKER BL, GINSBURG A. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J Biol Chem. 1958 Apr;231(2):1009–1029. [PubMed]
  • Heldt WH, Werdan K, Milovancev M, Geller G. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta. 1973 Aug 31;314(2):224–241. [PubMed]
  • HENNING U. EIN REGULATIONSMECHANISMUS BEIM ABBAU DER BRENZTRAUBENSAEURE DURCH ESCHERICHIA COLI. Biochem Z. 1963 Jul 26;337:490–504. [PubMed]
  • Hernandez E, Johnson MJ. Anaerobic growth yields of Aerobacter cloacae and Escherichia coli. J Bacteriol. 1967 Oct;94(4):991–995. [PMC free article] [PubMed]
  • Hillmer P, Gottschalk G. Particulate nature of enzymes involved in the fermentation of ethanol and acetate by Clostridium kluyveri. FEBS Lett. 1972 Apr 1;21(3):351–354. [PubMed]
  • Hilton MG. The metabolism of pyrimidines by proteolytic clostridia. Arch Microbiol. 1975;102(2):145–149. [PubMed]
  • HIMES RH, RABINOWITZ JC. Formyltetrahydrofolate synthetase. II. Characteristics of the enzyme and the enzymic reaction. J Biol Chem. 1962 Sep;237:2903–2914. [PubMed]
  • HIMES RH, RABINOWITZ JC. Formyltetrahydrofolate synthetase. III. Studies on the mechanism of the reaction. J Biol Chem. 1962 Sep;237:2915–2925. [PubMed]
  • Hirata H, Altendorf K, Harold FM. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1804–1808. [PubMed]
  • Hirata H, Altendorf K, Harold FM. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J Biol Chem. 1974 May 10;249(9):2939–2945. [PubMed]
  • HIRSCH CA, RASMINSKY M, DAVIS BD, LIN EC. A FUMARATE REDUCTASE IN ESCHERICHIA COLI DISTINCT FROM SUCCINATE DEHYDROGENASE. J Biol Chem. 1963 Nov;238:3770–3774. [PubMed]
  • HOBSON PN. CONTINUOUS CULTURE OF SOME ANEROBIC AND FACULTATIVELY ANAEROBIC RUMEN BACTERIA. J Gen Microbiol. 1965 Feb;38:167–180. [PubMed]
  • Hobson PN, Summers R. The continuous culture of anaerobic bacteria. J Gen Microbiol. 1967 Apr;47(1):53–65. [PubMed]
  • Holländer R. Correlation of the function of demethylmenaquinone in bacterial electron transport with its redox potential. FEBS Lett. 1976 Dec 15;72(1):98–100. [PubMed]
  • Holländer R. Energy metabolism of some representatives of the Haemophilus group. Antonie Van Leeuwenhoek. 1976;42(4):429–444. [PubMed]
  • Hopfer U, Lehninger AL, Thompson TE. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc Natl Acad Sci U S A. 1968 Feb;59(2):484–490. [PubMed]
  • Hopgood MF, Walker DJ. Succinic acid production by rumen bacteria. I. Isolation and metabolism of Ruminococcus flavefaciens. Aust J Biol Sci. 1967 Feb;20(1):165–182. [PubMed]
  • von Hugo H, Gottschalk G. Distribution of 1-phosphofructokinase and PEP:fructose phosphotransferase activity in Clostridia. FEBS Lett. 1974 Sep 15;46(1):106–108. [PubMed]
  • Hungate RE. Hydrogen as an intermediate in the rumen fermentation. Arch Mikrobiol. 1967;59(1):158–164. [PubMed]
  • Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC. Formate as an intermediate in the bovine rumen fermentation. J Bacteriol. 1970 May;102(2):389–397. [PMC free article] [PubMed]
  • HURWITZ J. Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim Biophys Acta. 1958 Jun;28(3):599–602. [PubMed]
  • Hurwitz C, Rosano CL. The intracellular concentration of bound and unbound magnesium ions in Escherichia coli. J Biol Chem. 1967 Aug 25;242(16):3719–3722. [PubMed]
  • Huxley AF. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PubMed]
  • Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 . J Bacteriol. 1973 Jun;114(3):1231–1240. [PMC free article] [PubMed]
  • Inderlied CB, Delwiche EA. Nitrate reduction and the growth of Veillonella alcalescens. J Bacteriol. 1973 Jun;114(3):1206–1212. [PMC free article] [PubMed]
  • Ishimoto M, Umeyama M, Chiba S. Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens. Z Allg Mikrobiol. 1974;14(2):115–121. [PubMed]
  • ITAGAKI E. THE ROLE OF LIPOPHILIC QUINONES IN THE ELECTRON TRANSPORT SYSTEM OF ESCHERICHIA COLI. J Biochem. 1964 Apr;55:432–445. [PubMed]
  • IWASAKI H, SHIDARA S, SUZUKI H, MOR T. Studies on denitrification. VII. Further purification and properties of denitrifying enzyme. J Biochem. 1963 Apr;53:299–303. [PubMed]
  • Iwasaki H, Matsubara T. Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis. J Biochem. 1971 May;69(5):847–857. [PubMed]
  • Iwasaki H, Matsubara T. A nitrite reductase from Achromobacter cycloclastes. J Biochem. 1972 Apr;71(4):645–652. [PubMed]
  • JACOBS NJ, WOLIN MJ. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. [PubMed]
  • JACOBS NJ, WOLIN MJ. Electron-transport system of Vibrio succinogenes. II. Inhibition of electron transport by 2-heptyl-4-hydroxyquinoline N-oxide. Biochim Biophys Acta. 1963 Jan 1;69:29–39. [PubMed]
  • Jagendorf AT, Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci U S A. 1966 Jan;55(1):170–177. [PubMed]
  • Jeng I, Barker HA. Purification and properties of l-3-aminobutyryl coenzyme A deaminase from a lysine-fermenting Clostridium. J Biol Chem. 1974 Oct 25;249(20):6578–6584. [PubMed]
  • Jeng IM, Somack R, Barker HA. Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A. Biochemistry. 1974 Jul 2;13(14):2898–2903. [PubMed]
  • John P, Whatley FR. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans. Biochim Biophys Acta. 1970 Sep 1;216(2):342–352. [PubMed]
  • JOHNS AT. The mechanism of propionic acid formation by Clostridium propionicum. J Gen Microbiol. 1952 Feb;6(1-2):123–127. [PubMed]
  • JOHNS AT. The mechanism of propionic acid formation by propionibacteria. J Gen Microbiol. 1951 May;5(2):337–345. [PubMed]
  • JOHNS AT. The mechanism of propionic acid formation by Veillonella gazogenes. J Gen Microbiol. 1951 May;5(2):326–336. [PubMed]
  • Moriwaki K, Kawakami F, Itoh Y, Iida S, Nishikawa M, Sugase T. A short term suppression and stimulation test for pituitary-adrenal function using intravenous betamethasone and 1-18ACTH. Med J Osaka Univ. 1978 Sep;29(1-2):127–138. [PubMed]
  • Jones HE, Skyring GW. Effect of enzymic assay conditions on sulfite reduction catalysed by desulfoviridin from Desulfovibrio gigas. Biochim Biophys Acta. 1975 Jan 23;377(1):52–60. [PubMed]
  • Joyce BK, Himes RH. Formyltetrahydrofolate synthetase. A study of equilibrium reaction rates. J Biol Chem. 1966 Dec 10;241(23):5716–5724. [PubMed]
  • Joyce BK, Himes RH. Formyltetrahydrofolate synthetase. Initial velocity and product inhibition studies. J Biol Chem. 1966 Dec 10;241(23):5725–5731. [PubMed]
  • Joyner AE, Jr, Baldwin RL. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol. 1966 Nov;92(5):1321–1330. [PMC free article] [PubMed]
  • Junge W, Rumberg B, Schröder H. The necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur J Biochem. 1970 Jul;14(3):575–581. [PubMed]
  • Jungermann K, Schön G. Pyruvate formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch Microbiol. 1974;99(2):109–116. [PubMed]
  • Jungermann K, Kirchniawy H, Katz N, Thauer RK. NADH, a physiological electron donor in clostridial nitrogen fixation. FEBS Lett. 1974 Jul 15;43(2):203–206. [PubMed]
  • Jungermann K, Leimenstoll G, Rupprecht E, Thauer RK. Demonstration of NADH-ferredoxin reductase in two caccharolytic Clostridia. Arch Mikrobiol. 1971;80(4):370–372. [PubMed]
  • Jungermann K, Rupprecht E, Ohrloff C, Thauer R, Decker K. Regulation of the reduced nicotinamide adenine dinucleotide-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):960–963. [PubMed]
  • Jungermann K, Thauer RK, Leimenstoll G, Decker K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta. 1973 May 30;305(2):268–280. [PubMed]
  • Jungermann K, Thauer RK, Rupprecht E, Ohrloff C, Decker K. Ferredoxin mediated hydrogen formation from NADPH in a cell-free system of Clostridium kluyveri. FEBS Lett. 1969 Apr;3(2):144–146. [PubMed]
  • Kaback HR. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. [PubMed]
  • Kamihara T. Ethanol utilization by Steptococcus faecalis. Arch Biochem Biophys. 1969 Aug;133(1):137–143. [PubMed]
  • Kandler O, Lauer E. Neuere Vorstellungen zur Taxonomie der Bifidobacterien. Zentralbl Bakteriol Orig A. 1974;228(1):29–45. [PubMed]
  • Kaprálek F. The physiological role of tetrathionate respiration in growing citrobacter. J Gen Microbiol. 1972 Jun;71(1):133–139. [PubMed]
  • Kaprálek F, Pichinoty F. The effect of oxygen on tetrathionate reductase activity and biosynthesis. J Gen Microbiol. 1970 Jul;62(1):95–105. [PubMed]
  • Delseny M, Aspart L, Cooke R, Grellet F, Penon P. Restriction analysis of radish nuclear genes coding for rRNA: evidence for heterogeneity. Biochem Biophys Res Commun. 1979 Nov 28;91(2):540–547. [PMC free article] [PubMed]
  • Synthesis and sideedness of membrane-bound respiratory nitrate reductase (EC1.7.99.4) in Escherichia coli lacking cytochromes. Biochem J. 1975 May;148(2):329–333. [PubMed]
  • Khosrovi B, Macpherson R, Miller JD. Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch Mikrobiol. 1971;80(4):324–337. [PubMed]
  • Kistler WS, Lin EC. Purification and properties of the flavine-stimulated anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli. J Bacteriol. 1972 Oct;112(1):539–547. [PMC free article] [PubMed]
  • Kiszkiss DF, Downey RJ. Localization and solubilization of the respiratory nitrate reductase of Bacillus stearothermophilus. J Bacteriol. 1972 Feb;109(2):803–810. [PMC free article] [PubMed]
  • Kiszkiss DF, Downey RJ. Physical aggregation and functional reconstitution of solubilized membranes of Bacillus stearothermophilus. J Bacteriol. 1972 Feb;109(2):811–819. [PMC free article] [PubMed]
  • KLEIN SM, SAGERS RD. Intermediary metabolism of Diplococcus glycinophilus. II. Enzymes of the acetategenerating system. J Bacteriol. 1962 Jan;83:121–126. [PMC free article] [PubMed]
  • Klein SM, Sagers RD. Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine in Peptococcus glycinophilus. J Biol Chem. 1966 Jan 10;241(1):197–205. [PubMed]
  • Klein SM, Sagers RD. Glycine metabolism. IV. Effect of borohydride reduction on the pyridoxal phosphate-containing glycine decarboxylase from Peptococcus glycinophilus. J Biol Chem. 1967 Jan 25;242(2):301–305. [PubMed]
  • Klein SM, Sagers RD. Glycine metabolism. 3. A flavin-linked dehydrogenase associated with the glycine cleavage system in Peptococcus glycinophilus. J Biol Chem. 1967 Jan 25;242(2):297–300. [PubMed]
  • KMETEC E, BUEDING E. Succinic and reduced diphosphopyridine nucleotide oxidase systems of Ascaris muscle. J Biol Chem. 1961 Feb;236:584–591. [PubMed]
  • Knappe J, Blaschkowski HP, Gröbner P, Schmitt T. Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur J Biochem. 1974 Dec 16;50(1):253–263. [PubMed]
  • Knook DL, Planta RJ. Restoration of electron transport in ultraviolet-irradiated membranes of Aerobacter aerogenes. FEBS Lett. 1971 Apr 12;14(1):54–56. [PubMed]
  • Knook DL, Planta RJ. Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen in Aerobacter aerogenes. J Bacteriol. 1971 Feb;105(2):483–488. [PMC free article] [PubMed]
  • Riet J van't The participation of cytochromes in the process of nitrate respiration in klesbsiella (Aerobacter) aerogenes. Biochim Biophys Acta. 1973 Jan 18;292(1):237–245. [PubMed]
  • Kobayashi K, Seki Y, Ishimoto M. Biochemical studies on sulfate-ruducing bacteria. 8. Sulfite reductase from Desulfovibrio vulgaris--mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties. J Biochem. 1974 Mar;75(3):519–529. [PubMed]
  • Kohn LD, Kaback HR. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem. 1973 Oct 25;248(20):7012–7017. [PubMed]
  • Koike I, Hattori A. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions. J Gen Microbiol. 1975 May;88(1):1–10. [PubMed]
  • Koike I, Hattori A. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. J Gen Microbiol. 1975 May;88(1):11–19. [PubMed]
  • Konings WN, Kaback HR. Anaerobic transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3376–3381. [PubMed]
  • Konings WN, Boonstra J, De Vries W. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens. J Bacteriol. 1975 Apr;122(1):245–249. [PMC free article] [PubMed]
  • Korman EF, McLick J. ATP synthesis in oxidative phosphorylation: a direct-union stereochemical reaction mechanism. J Bioenerg. 1972 May;3(1):147–158. [PubMed]
  • KRASNA AI, RIKLIS E, RITTENBERG D. The purification and properties of the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2717–2720. [PubMed]
  • Taccardi B, Viganotti C, Macchi E, De Ambroggi L. Relationships between the current field surrounding an isolated dog heart and the potential distribution on the surface of the body. Adv Cardiol. 1976;16:72–76. [PubMed]
  • Krebs HA, Veech RL. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes. Adv Enzyme Regul. 1969;7:397–413. [PubMed]
  • Krietsch WK, Bücher T. 3-phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur J Biochem. 1970 Dec;17(3):568–580. [PubMed]
  • Kröger A, Dadák V. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur J Biochem. 1969 Dec;11(2):328–340. [PubMed]
  • Kröger A, Dadák V, Klingenberg M, Diemer F. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. Eur J Biochem. 1971 Aug 16;21(3):322–333. [PubMed]
  • Kröger A. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta. 1974 May 22;347(2):273–289. [PubMed]
  • LADD JN, WALKER DJ. The fermentation of lactate and acrylate by the rumen micro-organism LC. Biochem J. 1959 Feb;71(2):364–373. [PubMed]
  • Lam Y, Nicholas DJ. Aerobic and anaerobic respiration in Micrococcus denitrificans. Biochim Biophys Acta. 1969 Apr 8;172(3):450–461. [PubMed]
  • Lam Y, Nicholas DJ. A nitrite reductase with cytochrome oxidase activity from Micrococcus denitrificans. Biochim Biophys Acta. 1969 Aug 5;180(3):459–472. [PubMed]
  • Langenberg KF, Bryant MP, Wolfe RS. Hydrogen-oxidizing methane bacteria. II. Electron microscopy. J Bacteriol. 1968 Mar;95(3):1124–1129. [PMC free article] [PubMed]
  • LARA FJ. The succinic dehydrogenase of Propionibacterium pentosaceum. Biochim Biophys Acta. 1959 Jun;33(2):565–567. [PubMed]
  • Laris PC, Pershadsingh HA. Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe. Biochem Biophys Res Commun. 1974 Apr 8;57(3):620–626. [PubMed]
  • Leach CK, Carr NG. Pyruvate: ferredoxin oxidoreductase and its activation by ATP in the blue-green alga Anabaena variabilis. Biochim Biophys Acta. 1971 Aug 6;245(1):165–174. [PubMed]
  • Lee JP, Peck HD., Jr Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun. 1971 Nov 5;45(3):583–589. [PubMed]
  • Lee JP, Yi CS, LeGall J, Peck HD., Jr Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol. 1973 Jul;115(1):453–455. [PMC free article] [PubMed]
  • Lee JP, LeGall J, Peck HD., Jr Isolation of assimilatroy- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J Bacteriol. 1973 Aug;115(2):529–542. [PMC free article] [PubMed]
  • Le Gall J. Purification PARTIELLE ET 'ETUDE DE LA NAD: rubrédoxine oxydo-réductase de D. Gigas. Ann Inst Pasteur (Paris) 1968 Jan;114(1):109–115. [PubMed]
  • Le Gall J, Hatchikian EC. Purification et propriétés d'une flavoprotéine intervenant dans la réduction du sulfite par Desulvovibrio gigas. C R Acad Sci Hebd Seances Acad Sci D. 1967 May 29;264(22):2580–2583. [PubMed]
  • Legall J, DerVartanian DV, Spilker E, Lee JP, Peck HD., Jr Evidence for the involvement of non-heme iron in the active site of hydrogenase from Desulfovibrio vulgaris. Biochim Biophys Acta. 1971 Jun 15;234(3):526–530. [PubMed]
  • Le Gall J, Dragoni N. Dependance of sulfite reduction on a crystallized ferredoxin from Desulfovibrio gigas. Biochem Biophys Res Commun. 1966 Apr 19;23(2):145–149. [PubMed]
  • LEGALL J, MAZZA G, DRAGONI N. LE CYTOCHROME C3 DE DESULFOVIBRIO GIGAS. Biochim Biophys Acta. 1965 May 18;99:385–387. [PubMed]
  • LENTZ K, WOOD HG. Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J Biol Chem. 1955 Aug;215(2):645–654. [PubMed]
  • Le Minor L, Piéchaud M, Pichinoty F, Coynault C. Etude par transduction sur les nitrate-, tétrathionate- et thiosulfate-réductases de Salmonella typhi-murium. Ann Inst Pasteur (Paris) 1969 Nov;117(5):637–644. [PubMed]
  • Lester RL, DeMoss JA. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J Bacteriol. 1971 Mar;105(3):1006–1014. [PMC free article] [PubMed]
  • LESTER RL, WHITE DC, SMITH SL. THE 2-DESMETHYL VITAMIN K2'S. A NEW GROUP OF NAPHTHOQUINONES ISOLATED FROM HEMOPHILUS PARAINFLUENZAE. Biochemistry. 1964 Jul;3:949–954. [PubMed]
  • Leung KH, Hinkle PC. Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-cytochrome c reductase and phospholipids. J Biol Chem. 1975 Nov 10;250(21):8467–8471. [PubMed]
  • LEWIS D, ELSDEN SR. The fermentation of L-threonine, L-serine, L-cysteine and acrylic acid by a gram-negative coccus. Biochem J. 1955 Aug;60(4):683–692. [PubMed]
  • Lewis AJ, Miller JD. Keto acid metabolism in Desulfovibrio. J Gen Microbiol. 1975 Oct;90(2):286–292. [PubMed]
  • Genco RJ, Cianciola LJ. Relationship of the neutrophil to host resistance in periodontal disease. Alpha Omegan. 1977 Dec;70(3):31–35. [PMC free article] [PubMed]
  • LIGHTBOWN JW, JACKSON FL. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J. 1956 May;63(1):130–137. [PubMed]
  • Lindmark DG, Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973 Nov 25;248(22):7724–7728. [PubMed]
  • Lindmark DG, Müller M. Biochemical cytology of trichomonad flagellates. II. Subcellular distribution of oxidoreductases and hydrolases in Monocercomonas sp. J Protozool. 1974 May;21(2):374–378. [PubMed]
  • Lindmark DG, Paolella P, Wood NP. The pyruvate formate-lyase system of Streptococcus faecalis. I. Purification and properties of the formate-pyruvate exchange enzyme. J Biol Chem. 1969 Jul 10;244(13):3605–3612. [PubMed]
  • Linke HA. CO2-Fixierung durch Clostridium aceticum: 14CO2-Kurzzeiteinbau und Pyruvatstoffwechesel. Arch Mikrobiol. 1969;64(3):203–214. [PubMed]
  • Ljungdahl LG, Andreesen JR. Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium. FEBS Lett. 1975 Jun 15;54(2):279–282. [PubMed]
  • Ljungdahl LG. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol. 1969;23:515–538. [PubMed]
  • Ljungdahl L, Brewer JM, Neece SH, Fairwell T. Purification, stability, and composition of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Biol Chem. 1970 Sep 25;245(18):4791–4797. [PubMed]
  • London J, Knight M. Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. J Gen Microbiol. 1966 Aug;44(2):241–254. [PubMed]
  • MacGregor CH. Solubilization of Escherichia coli nitrate reductase by a membrane-bound protease. J Bacteriol. 1975 Mar;121(3):1102–1110. [PMC free article] [PubMed]
  • MacGregor CH, Schnaitman CA, Normansell DE. Purification and properties of nitrate reductase from Escherichia coli K12. J Biol Chem. 1974 Aug 25;249(16):5321–5327. [PubMed]
  • Macy J, Kulla H, Gottschalk G. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J Bacteriol. 1976 Feb;125(2):423–428. [PMC free article] [PubMed]
  • Macy J, Probst I, Gottschalk G. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol. 1975 Aug;123(2):436–442. [PMC free article] [PubMed]
  • Maloney PC, Kashket ER, Wilson TH. A protonmotive force drives ATP synthesis in bacteria. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3896–3900. [PubMed]
  • Maroc J, Azerad R, Kamen MD, Le Gall J. Menaquinone (MK-6) in the sulfate-reducing obligate anaerobe, Desulfovibrio. Biochim Biophys Acta. 1970 Jan 13;197(1):87–89. [PubMed]
  • Matsubara T. Studies on denitrification. XII. Gas production from amines and nitrite. J Biochem. 1970 Feb;67(2):229–235. [PubMed]
  • Matsubara T. Studies on denitrification. 8. Some properties of the N2O-anaerobically grown cell. J Biochem. 1971 Jun;69(6):991–1001. [PubMed]
  • Matsubara T. The participation of cytochromes in the reduction of N20 to N2 by a denitryfying bacterium. J Biochem. 1975 Mar;77(3):627–632. [PubMed]
  • Matsubara T, Iwasaki H. Enzymatic steps of dissimilatory nitrite reduction in Alcaligenes faecalis. J Biochem. 1971 May;69(5):859–868. [PubMed]
  • Matsubara T, Iwasaki H. Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd. J Biochem. 1972 Jul;72(1):57–64. [PubMed]
  • Matsubara T, Mori T. Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen. J Biochem. 1968 Dec;64(6):863–871. [PubMed]
  • Mayhew SG. Properties of two clostridial flavodoxins. Biochim Biophys Acta. 1971 May 12;235(2):276–288. [PubMed]
  • Mayhew SG, Massey V. Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem. 1969 Feb 10;244(3):794–802. [PubMed]
  • Mayhew SG, Foust GP, Massey V. Oxidation-reduction properties of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem. 1969 Feb 10;244(3):803–810. [PubMed]
  • McBride BC, Wolfe RS. A new coenzyme of methyl transfer, coenzyme M. Biochemistry. 1971 Jun 8;10(12):2317–2324. [PubMed]
  • McClare CW. In defence of the high energy phosphate bond. J Theor Biol. 1972 May;35(2):233–246. [PubMed]
  • Davis ME. Ethical conduct and the occupational physician. Bull N Y Acad Med. 1978 Sep;54(8):733–741. [PMC free article] [PubMed]
  • Block DL. Organizational environment and ethical conduct in occupational medicine: loyalty of the occupational physician. Bull N Y Acad Med. 1978 Sep;54(8):742–747. [PMC free article] [PubMed]
  • McGill DJ, Dawes EA. Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J. 1971 Dec;125(4):1059–1068. [PubMed]
  • Metzger H. Biochemie einiger parasitische lebender Würmer und Protozoen und die Wirkungsweise chemotherapeutisch wichtiger Stoffe. Z Parasitenkd. 1970;34(4):271–295. [PubMed]
  • Meyer TE, Bartsch RG, Kamen MD. Cytochrome c 3 . A class of electron transfer heme proteins found in both photosynthetic and sulfate-reducing bacteria. Biochim Biophys Acta. 1971 Sep 7;245(2):453–464. [PubMed]
  • Miki K, Lin EC. Enzyme complex which couples glycerol-3-phosphate dehydrogenation to fumarate reduction in Escherichia coli. J Bacteriol. 1973 May;114(2):767–771. [PMC free article] [PubMed]
  • Miki K, Lin EC. Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli. J Bacteriol. 1975 Dec;124(3):1288–1294. [PMC free article] [PubMed]
  • Miki K, Lin EC. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system. J Bacteriol. 1975 Dec;124(3):1282–1287. [PMC free article] [PubMed]
  • Miller JD, Wakerley DS. Growth of sulphate-reducing bacteria by fumarate dismutation. J Gen Microbiol. 1966 Apr;43(1):101–107. [PubMed]
  • MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. [PubMed]
  • Mitchell P. Translocations through natural membranes. Adv Enzymol Relat Areas Mol Biol. 1967;29:33–87. [PubMed]
  • Mitchell P. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J Bioenerg. 1972 May;3(1):5–24. [PubMed]
  • Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. [PubMed]
  • Mitchell P. Hypothesis: cation-translocating adenosine triphosphatase models: how direct is the participation of adenosine triphosphate and its hydrolysis products in cation translocation? FEBS Lett. 1973 Jul 15;33(3):267–274. [PubMed]
  • Mitchell P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 1974 Jul 15;43(2):189–194. [PubMed]
  • Mitchell P. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. FEBS Lett. 1975 Feb 1;50(2):95–97. [PubMed]
  • Mitchell P. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 1975 Aug 1;56(1):1–6. [PubMed]
  • Mitchell P, Moyle J. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur J Biochem. 1968 May;4(4):530–539. [PubMed]
  • Mitchell P, Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. [PubMed]
  • Miyata M. Studies on denitrification. XIV. The electron donating system in the reduction of nitric oxide and nitrate. J Biochem. 1971 Aug;70(2):205–213. [PubMed]
  • Miyata M, Mori T. Studies on denitrification. 8. Production of nitric oxide by denitrifying reaction in the presence of tetramethyl-p-phenylenediamine. J Biochem. 1968 Dec;64(6):849–861. [PubMed]
  • Miyata M, Mori T. Studies on denitrification. X. The "denitrifying enzyme" as a nitrite reductase and the electron donating system for denitrification. J Biochem. 1969 Oct;66(4):463–471. [PubMed]
  • Miyata M, Matsubara T, Mori T. Studies on denitrification. XI. Some properties of nitric oxide reductase. J Biochem. 1969 Dec;66(6):759–765. [PubMed]
  • MOLINARI R, LARA FJ. The lactic dehydrogenase of Propionibacterium pentosaceum. Biochem J. 1960 Apr;75:57–65. [PubMed]
  • MØLLER V. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand. 1955;36(2):158–172. [PubMed]
  • Moore MR, O'Brien WE, Ljungdahl LG. Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J Biol Chem. 1974 Aug 25;249(16):5250–5253. [PubMed]
  • Moustafa HH, Collins EB. Molar growth yields of certain lactic acid bacteria as influenced by autolysis. J Bacteriol. 1968 Jul;96(1):117–125. [PMC free article] [PubMed]
  • Moyle J, Mitchell P. Proton translocation quotient for the adenosine triphosphatase of rat liver mitochondria. FEBS Lett. 1973 Mar 15;30(3):317–320. [PubMed]
  • Murphy MJ, Siegel LM. Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J Biol Chem. 1973 Oct 10;248(19):6911–6919. [PubMed]
  • Murphy MJ, Siegel LM, Kamin H, DerVartanian DV, Lee JP, LeGall J, Peck HD., Jr An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases. Biochem Biophys Res Commun. 1973 Sep 5;54(1):82–88. [PubMed]
  • Murphy MJ, Siegel LM, Tove SR, Kamin H. Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci U S A. 1974 Mar;71(3):612–616. [PubMed]
  • Murray JM, Weber A. The cooperative action of muscle proteins. Sci Am. 1974 Feb;230(2):58–71. [PubMed]
  • Müller M. Biochemistry of protozoan microbodies: peroxisomes, alpha-glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol. 1975;29:467–483. [PubMed]
  • Naik MS, Nicholas DJ. Phosphorylation associated with nitrate and nitrite reduction in Micrococcus denitrificans and Pseudomonas denitrificans. Biochim Biophys Acta. 1966 Mar 7;113(3):490–497. [PubMed]
  • Newman DJ, Postgate JR. Rubredoxin from a nitrogen-fixing variety of Desulfovibrio desulfuricans. Eur J Biochem. 1968 Dec;7(1):45–50. [PubMed]
  • Newton N. The two-haem nitrite reductase of Micrococcus denitrificans. Biochim Biophys Acta. 1969;185(2):316–331. [PubMed]
  • Newton NA, Cox GB, Gibson F. The function of menaquinone (vitamin K 2 ) in Escherichia coli K-12. Biochim Biophys Acta. 1971 Jul 20;244(1):155–166. [PubMed]
  • NICHOLAS DJ, WILSON PJ. A DISSIMILATORY NITRATE REDUCTASE FROM NEUROSPORA CRASSA. Biochim Biophys Acta. 1964 Jun 8;86:466–476. [PubMed]
  • Nicholls DG. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides. Eur J Biochem. 1974 Dec 2;49(3):585–593. [PubMed]
  • Niederman RA, Wolin MJ. Requirement of succinate for the growth of Vibrio succinogenes. J Bacteriol. 1972 Feb;109(2):546–549. [PMC free article] [PubMed]
  • Nojiri T, Tanaka F, Nakayama I. Purification and properties of phosphotransacetylase from Lactobacillus fermenti. J Biochem. 1971 Apr;69(4):789–801. [PubMed]
  • O'Brien WE, Ljungdahl LG. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J Bacteriol. 1972 Feb;109(2):626–632. [PMC free article] [PubMed]
  • O'Brien WE, Brewer JM, Ljungdahl LG. Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem. 1973 Jan 25;248(2):403–408. [PubMed]
  • Oesterhelt D. The purple membrane of Halobacterium halobium: a new system for light energy conversion. Ciba Found Symp. 1975;(31):147–167. [PubMed]
  • OHNISHI T. Oxidative phosphorylation coupled with nitrate respiration with cell free extract of Pseudomonas denitrificans. J Biochem. 1963 Jan;53:71–79. [PubMed]
  • OTA A, YAMANAKA T, OKUNUKI K. OXIDATIVE PHOSPHORYLATION COUPLED WITH NITRATE RESPIRATION. II. PHOSPHORYLATION COUPLED WITH ANAEROBIC NITRATE REDUCTION IN A CELL-FREE EXTRACT OF ESCHERICHIA COLI. J Biochem. 1964 Feb;55:131–135. [PubMed]
  • Ottow JC. Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in Aerobacter aerogenes. Z Allg Mikrobiol. 1968;8(5):441–443. [PubMed]
  • Ottow JC. The distribution and differentiation of iron-reducing bacteria in gley soils. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1969;123(6):600–615. [PubMed]
  • Ottow JC. Mechanism of iron-reduction by nitrate reductase inducible aerobic microorganisms. Naturwissenschaften. 1969 Jul;56(7):371–371. [PubMed]
  • Ottow JC. Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria. Z Allg Mikrobiol. 1970;10(1):55–62. [PubMed]
  • Owen CS, Wilson DF. Control of respiration by the mitochondrial phosphorylation state. Arch Biochem Biophys. 1974 Apr 2;161(2):581–591. [PubMed]
  • Padan E, Rottenberg H. Respiratory control and the proton electrochemical gradient in mitochondria. Eur J Biochem. 1973 Dec 17;40(2):431–437. [PubMed]
  • Papa S. Proton translocation reactions in the respiratory chains. Biochim Biophys Acta. 1976 Apr 30;456(1):39–84. [PubMed]
  • Papavassiliou J, Samaraki-Lyberopoulou V, Piperakis G. Production of tetrathionate reductase by Salmonella. Can J Microbiol. 1969 Feb;15(2):238–240. [PubMed]
  • Parker DJ, Wu TF, Wood HG. Total synthesis of acetate from CO 2 : methyltetrahydrofolate, an intermediate, and a procedure for separation of the folates. J Bacteriol. 1971 Nov;108(2):770–776. [PMC free article] [PubMed]
  • Parnes JR, Boos W. Energy coupling of the -methylgalactoside transport system of Escherichia coli. J Biol Chem. 1973 Jun 25;248(12):4429–4435. [PubMed]
  • Pauling L. Structure of high-energy molecules. Chem Br. 1970 Nov;6(11):468–472. [PubMed]
  • Payne WJ. Energy yields and growth of heterotrophs. Annu Rev Microbiol. 1970;24:17–52. [PubMed]
  • Payne WJ. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 1973 Dec;37(4):409–452. [PMC free article] [PubMed]
  • Payne WJ, Riley PS, Cox CD., Jr Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus. J Bacteriol. 1971 May;106(2):356–361. [PMC free article] [PubMed]
  • Paynter MJ, Elsden SR. Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism. J Gen Microbiol. 1970 Apr;61(1):1–7. [PubMed]
  • Anderson WB, Gallo M, Wilson J, Lovelace E, Pastan I. Effect of epidermal growth factor on prostaglandin E1-stimulated accumulation of cyclic AMP in fibroblastic cells. FEBS Lett. 1979 Jun 15;102(2):329–332. [PubMed]
  • PECK HD., Jr Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2734–2738. [PubMed]
  • PECK HD., Jr The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem. 1962 Jan;237:198–203. [PubMed]
  • Peck HD., Jr Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun. 1966 Jan 4;22(1):112–118. [PubMed]
  • PECK HD, Jr, SMITH OH, GEST H. Comparative biochemistry of the biological reduction of fumaric acid. Biochim Biophys Acta. 1957 Jul;25(1):142–147. [PubMed]
  • PEEL JL. The breakdown of pyruvate by cell-free extracts of the rumen micro-organism LC. Biochem J. 1960 Mar;74:525–541. [PubMed]
  • Pelroy RA, Whiteley HR. Regulatory properties of acetokinase from Veillonella alcalescens. J Bacteriol. 1971 Jan;105(1):259–267. [PMC free article] [PubMed]
  • Petitdemange H, Bengone JM, Cherrier C, Gay R. Influence de la source carboneé sur les activitiés NAD+ et NADP+-ferredoxine oxydoréductasiques de Clostridium tyrobutyricum. C R Acad Sci Hebd Seances Acad Sci D. 1974 May 20;278(21):2707–2710. [PubMed]
  • PETRACK B, SULLIVAN L, RATNER S. Behavior of purified arginine desiminase from S. faecalis. Arch Biochem Biophys. 1957 Jul;69:186–197. [PubMed]
  • Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976 Oct 11;110(1):3–12. [PubMed]
  • Phillips RC, George P, Rutman RJ. Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength. J Biol Chem. 1969 Jun 25;244(12):3330–3342. [PubMed]
  • PICHINOTY F. A PROPOS DES NITRATE-R'EDUCTASES D'UNE BACT'ERIE D'ENITRIFIANTE. Biochim Biophys Acta. 1964 Aug 26;89:378–381. [PubMed]
  • PICHINOTY F, BIGLIARDI-ROUVIER J. [Research on tetrathionate reductase of a facultative anaerobic bacterium]. Biochim Biophys Acta. 1963 Mar 12;67:366–378. [PubMed]
  • PICHINOTY F, D'ORNANO L. [Research on the reduction of nitrous oxide by Micrococcus denitrificans]. Ann Inst Pasteur (Paris) 1961 Sep;101:418–426. [PubMed]
  • Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. [PubMed]
  • Albrechtsen D, Brandtzaeg P. Invaginasjon hos barn. Tidsskr Nor Laegeforen. 1976 Jan 10;96(1):11–14. [PubMed]
  • Portis AR, Jr, McCarty RE. Quantitative relationships between phosphorylation, electron flow, and internal hydrogen ion concentrations in spinach chloroplasts. J Biol Chem. 1976 Mar 25;251(6):1610–1617. [PubMed]
  • POSTGATE JR. The reduction of sulphur compounds by Desulphovibrio desulphuricans. J Gen Microbiol. 1951 Oct;5(4):725–738. [PubMed]
  • POSTGATE JR. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. [PubMed]
  • Postgate JR. Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965 Dec;29(4):425–441. [PMC free article] [PubMed]
  • Postgate JR, Campbell LL. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev. 1966 Dec;30(4):732–738. [PMC free article] [PubMed]
  • Prakash OM, Sadana JC. Purification, characterization and properties of nitrite reductase of Achromobacter fischeri. Arch Biochem Biophys. 1972 Feb;148(2):614–632. [PubMed]
  • Prakash O, Rao RR, Sadana JC. Purification and characterization of nitrite reductase from Achromobacter fischeri. Biochim Biophys Acta. 1966 May 5;118(2):426–429. [PubMed]
  • Prins RA, van Nevel CJ, Demeyer DI. Pure culture studies of inhibitors for methanogenic bacteria. Antonie Van Leeuwenhoek. 1972;38(3):281–287. [PubMed]
  • Favretto L, Tunis F. Determination of polyoxyethylene alkylphenyl ether non-ionic surfactants in waters. Analyst. 1976 Mar;101(1200):198–202. [PubMed]
  • RABINOWITZ JC, PRICER WE., Jr Formyltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. J Biol Chem. 1962 Sep;237:2898–2902. [PubMed]
  • Racker E. The two faces of the inner mitochondrial membrane. Essays Biochem. 1970;6:1–22. [PubMed]
  • Racker E, Kandrach A. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation. J Biol Chem. 1973 Aug 25;248(16):5841–5847. [PubMed]
  • Radcliffe BC, Nicholas DJ. Some properties of a nitrite reductase from Pseudomonas denitrificans. Biochim Biophys Acta. 1968 Apr 2;153(3):545–554. [PubMed]
  • Radcliffe BC, Nicholas DJ. Some properties of a nitrate reductase from Pseudomonas denitrificans. Biochim Biophys Acta. 1970;205(2):273–287. [PubMed]
  • Ragan CI, Hinkle PC. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem. 1975 Nov 10;250(21):8472–8476. [PubMed]
  • Raven JA, Smith FA. The evolution of chemiosmotic energy coupling. J Theor Biol. 1976 Apr;57(2):301–312. [PubMed]
  • Reddy CA, Bryant MP, Wolin MJ. Characteristics of S organism isolated from Methanobacillus omelianskii. J Bacteriol. 1972 Feb;109(2):539–545. [PMC free article] [PubMed]
  • Reddy CA, Bryant MP, Wolin MJ. Ferredoxin- and nicotinamide adenine dinucleotide-dependent H 2 production from ethanol and formate in extracts of S organism isolated from "Methanobacillus omelianskii". J Bacteriol. 1972 Apr;110(1):126–132. [PMC free article] [PubMed]
  • Reddy CA, Bryant MP, Wolin MJ. Ferredoxin-dependent conversion of acetaldehyde to acetate and H 2 in extracts of S organism. J Bacteriol. 1972 Apr;110(1):133–138. [PMC free article] [PubMed]
  • Reeves RE. A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem. 1968 Jun 10;243(11):3202–3204. [PubMed]
  • Reeves JP. Transient pH changes during D-lactate oxidation by membrane vesicles. Biochem Biophys Res Commun. 1971 Nov;45(4):931–936. [PubMed]
  • Reeves RE, Menzies RA, Hsu DS. The pyruvate-phosphate dikinase reaction. The fate of phosphate and the equilibrium. J Biol Chem. 1968 Oct 25;243(20):5486–5491. [PubMed]
  • Reid RA, Moyle J, Mitchell P. Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria. Nature. 1966 Oct 15;212(5059):257–258. [PubMed]
  • Renner ED, Becker GE. Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii. J Bacteriol. 1970 Mar;101(3):821–826. [PMC free article] [PubMed]
  • Riebeling V, Jungermann K. Properties and function of clostridial membrane ATPase. Biochim Biophys Acta. 1976 Jun 8;430(3):434–444. [PubMed]
  • Riebeling V, Thauer RK, Jungermann K. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem. 1975 Jul 1;55(2):445–453. [PubMed]
  • Rimerman EA, Barker HA. Formation and identification of 3-keto-5-aminohexanoic acid, a probable intermediate in lysine fermentation. J Biol Chem. 1968 Dec 10;243(23):6151–6160. [PubMed]
  • Ritchey TW, Seeley HW. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium. J Gen Microbiol. 1974 Dec;85(2):220–228. [PubMed]
  • Rizza V, Sinclair PR, White DC, Cuorant PR. Electron transport system of the protoheme-requiring anaerobe Bacteroides melaninogenicus. J Bacteriol. 1968 Sep;96(3):665–671. [PMC free article] [PubMed]
  • ROBBINS PW, LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed]
  • Robertson AM, Wolfe RS. ATP requirement for methanogenesis in cell extracts of methanobacterium strain M.o.H. Biochim Biophys Acta. 1969 Dec 30;192(3):420–429. [PubMed]
  • Roberton AM, Wolfe RS. Adenosine triphosphate pools in Methanobacterium. J Bacteriol. 1970 Apr;102(1):43–51. [PMC free article] [PubMed]
  • CNA heard on project iatrogenesis. Calif Nurse. 1978 Oct;74(4):1–6. [PMC free article] [PubMed]
  • Roon RJ, Barker HA. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase. J Bacteriol. 1972 Jan;109(1):44–50. [PMC free article] [PubMed]
  • ROSE IA, GRUNBERG-MANAGO M, KOREY SR, OCHOA S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954 Dec;211(2):737–756. [PubMed]
  • Rosing J, Slater EC. The value of G degrees for the hydrolysis of ATP. Biochim Biophys Acta. 1972 May 25;267(2):275–290. [PubMed]
  • Ross RA, Vernon CA. A reply to Douglas Wilkie. Chem Br. 1970 Dec 12;6(12):539–540. [PubMed]
  • Rossi E, Azzone GF. The mechanism of ion translocation in mitochondria. 3. Coupling of K+ efflux with ATP synthesis. Eur J Biochem. 1970 Feb;12(2):319–327. [PubMed]
  • Rottenberg H. The measurement of transmembrane electrochemical proton gradients. J Bioenerg. 1975 May;7(2):61–74. [PubMed]
  • Rottenberg H, Grunwald T. Determination of pH in chloroplasts. 3. Ammonium uptake as a measure of pH in chloroplasts and sub-chloroplast particles. Eur J Biochem. 1972 Jan 31;25(1):71–74. [PubMed]
  • Rottenberg H, Grunwald T, Avron M. Direct determination of DeltapH in chloroplasts, and its relation to the mechanisms of photoinduced reactions. FEBS Lett. 1971 Feb 12;13(1):41–44. [PubMed]
  • Rottenberg H, Grunwald T, Avron M. Determination of pH in chloroplasts. I. Distribution of ( 14 C) methylamine. Eur J Biochem. 1972 Jan 31;25(1):54–63. [PubMed]
  • Rudolph FB, Purich DL, Fromm HJ. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties, and kinetic studies of the enzyme. J Biol Chem. 1968 Nov 10;243(21):5539–5545. [PubMed]
  • Ruiz-Herrera J, DeMoss JA. Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction. J Bacteriol. 1969 Sep;99(3):720–729. [PMC free article] [PubMed]
  • Ruíz-Herrera J, Alvarez A, Figueroa I. Solubilization and properties of formate dehydrogenases from the membrane of Escherichia coli. Biochim Biophys Acta. 1972 Dec 7;289(2):254–261. [PubMed]
  • SAGERS RD, BENZIMAN M, GUNSALUS IC. Acetate formation in Clostridium acidi-urici: acetokinase. J Bacteriol. 1961 Aug;82:233–238. [PMC free article] [PubMed]
  • Sapshead LM, Wimpenny JW. The influence of oxygen and nitrate on the formation of the cytochrome pigments of the aerobic and anaerobic respiratory chain of Micrococcus denitrificans. Biochim Biophys Acta. 1972 May 25;267(2):388–397. [PubMed]
  • Sasarman A, Purvis P, Portelance V. Role of menaquinone in nitrate respiration in Staphylococcus aureus. J Bacteriol. 1974 Feb;117(2):911–913. [PMC free article] [PubMed]
  • Sato M, Yamada K, Ozawa H. Rhodoquinone specificity in the reactivation of succinoxidase activity of acetone-extracted Ascaris mitochondria. Biochem Biophys Res Commun. 1972 Jan 31;46(2):578–582. [PubMed]
  • Sawada Y, Iyanagi T, Yamazaki I. Relation between redox potentials and rate constants in reactions coupled with the system oxygen-superoxide. Biochemistry. 1975 Aug 26;14(17):3761–3764. [PubMed]
  • Scardovi V, Sgorbati B, Zani G. Starch gel electrophoresis of fructose-6-phosphate phophoketolase in the genus Bifidobacterium. J Bacteriol. 1971 Jun;106(3):1036–1039. [PMC free article] [PubMed]
  • Schaupp A, Ljungdahl LG. Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol. 1974;100(2):121–129. [PubMed]
  • Scheibel LW, Saz HJ, Bueding E. The anaerobic incorporation of 32P into adenosine triphosphate by Hymenolepis diminuta. J Biol Chem. 1968 May 10;243(9):2229–2235. [PubMed]
  • Schimke RT, Berlin CM, Sweeney EW, Carroll WR. The generation of energy by the arginine dihydrolase pathway in Mycoplasma hominis 07. J Biol Chem. 1966 May 25;241(10):2228–2236. [PubMed]
  • Schmidt GB, Rosano CL, Hurwitz C. Evidence for a magnesium pump in Bacillus cereus T. J Bacteriol. 1971 Jan;105(1):150–155. [PMC free article] [PubMed]
  • Schnebli HP, Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Preparation and homogeneity. J Biol Chem. 1970 Mar 10;245(5):1115–1121. [PubMed]
  • Schnebli HP, Vatter AE, Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition. J Biol Chem. 1970 Mar 10;245(5):1122–1127. [PubMed]
  • Schoberth S, Gottschalk G. Considerations on the energy metabolism of Clostridium kluyveri. Arch Mikrobiol. 1969;65(4):318–328. [PubMed]
  • Scholes P, Mitchell P. Respiration-driven proton translocation in Micrococcus denitrificans. J Bioenerg. 1971 Sep;1(3):309–323. [PubMed]
  • Scholes P, Mitchell P. Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate. J Bioenerg. 1970 Jun;1(1):61–72. [PubMed]
  • Scholes PB, Smith L. Composition and properties of the membrane-bound respiratory chain system of Micrococcus denitrificans. Biochim Biophys Acta. 1968 Feb 12;153(2):363–375. [PubMed]
  • Scholes PB, McLain G, Smith L. Purification and properties of a c-type cytochrome from Micrococcus denitrificans. Biochemistry. 1971 May 25;10(11):2072–2076. [PubMed]
  • SCHRAMM M, KLYBAS V, RACKER E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem. 1958 Dec;233(6):1283–1288. [PubMed]
  • Schuldiner S, Rottenberg H, Avron M. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts. Eur J Biochem. 1972 Jan 31;25(1):64–70. [PubMed]
  • Schuldiner S, Rottenberg H, Avron M. Membrane potential as a driving force for ATP synthesis in chloroplasts. FEBS Lett. 1972 Dec 1;28(2):173–176. [PubMed]
  • Schulman M, Ghambeer RK, Ljungdahl LG, Wood HG. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J Biol Chem. 1973 Sep 25;248(18):6255–6261. [PubMed]
  • Schulman M, Parker D, Ljungdahl LG, Wood HG. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria. J Bacteriol. 1972 Feb;109(2):633–644. [PMC free article] [PubMed]
  • Schulp JA, Stouthamer AH. The influence of oxygen, glucose and nitrate upon the formation of nitrate reductase and the respiratory system in Bacillus licheniformis. J Gen Microbiol. 1970 Dec;64(2):195–203. [PubMed]
  • Schwartz AC. Terpenoid quinones of the anaerobic Propionibacterium shermanii. I. (II, 3)-Tetrahydromenaquinone-9. Arch Mikrobiol. 1973 Jun 6;91(3):273–279. [PubMed]
  • Schwartz AC, Schäfer R. New amino acids, and heterocyclic compounds participating in the Stickland reaction of Clostridium sticklandii. Arch Mikrobiol. 1973 Nov 2;93(3):267–276. [PubMed]
  • Schwartz AC, Sporkenbach J. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies. Arch Microbiol. 1975 Mar 10;102(3):261–273. [PubMed]
  • SEIDMAN I, ENTNER N. Oxidative enzymes and their role in phosphorylation in sarcosomes of adult Ascaris lumbricoides. J Biol Chem. 1961 Mar;236:915–919. [PubMed]
  • SENEZ JC. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962 Jun;26:95–107. [PMC free article] [PubMed]
  • Senior AE. The structure of mitochondrial ATPase. Biochim Biophys Acta. 1973 Dec 31;301(3):249–277. [PubMed]
  • Shahak Y, Hardt H, Avron M. Acid-base driven reverse electron flow in isolated chloroplasts. FEBS Lett. 1975 Jun 15;54(2):151–154. [PubMed]
  • Shikama K. Standard free energy maps for the hydrolysis of ATP as a function of pH, pMg and pCa. Arch Biochem Biophys. 1971 Nov;147(1):311–317. [PubMed]
  • Shimizu M, Suzuki T, Kameda KY, Abiko Y. Phosphotransacetylase of Escherichia coli B, purification and properties. Biochim Biophys Acta. 1969;191(3):550–558. [PubMed]
  • Showe MK, DeMoss JA. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. [PMC free article] [PubMed]
  • Shum AC, Murphy JC. Effects of selenium compounds on formate metabolism and coincidence of selenium-75 incorporation and formic dehydrogenase activity in cell-free preparations of Escherichia coli. J Bacteriol. 1972 Apr;110(1):447–449. [PMC free article] [PubMed]
  • Simoni RD, Postma PW. The energetics of bacterial active transport. Annu Rev Biochem. 1975;44:523–554. [PubMed]
  • Singh AP, Bragg PD. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. Biochim Biophys Acta. 1975 Aug 11;396(2):229–241. [PubMed]
  • Singh AP, Bragg PD. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1976 Mar 12;423(3):450–461. [PubMed]
  • Skulachev VP. Enzymic generators of membrane potential in mitochondria. Ann N Y Acad Sci. 1974 Feb 18;227:188–202. [PubMed]
  • Slater EC. The coupling between energy-yielding and energy-utilizing reactions in mitochondria. Q Rev Biophys. 1971 Feb;4(1):35–71. [PubMed]
  • Slater EC, Rosing J, Mol A. The phosphorylation potential generated by respiring mitochondria. Biochim Biophys Acta. 1973 Apr 5;292(3):534–553. [PubMed]
  • Slayman CL. Adenine nucleotide levels in Neurospora, as influenced by conditions of growth and by metabolic inhibitors. J Bacteriol. 1973 May;114(2):752–766. [PMC free article] [PubMed]
  • Sone N. The redox reactions in propionic acid fermantation. I. Occurrence and nature of an electron transfer system in Propionibacterium arabinosum. J Biochem. 1972 Jun;71(6):931–940. [PubMed]
  • Sone N. The redox reactions in propionic acid fermentation. IV. Participation of menaquinone in the electron transfer system in Propionibacterium arabinosum. J Biochem. 1974 Jul;76(1):137–145. [PubMed]
  • Sone N, Kitsutani S. The redox reactions in propionic acid fermentation. II. Purification of NAD-independent glycerolphosphate dehydrogenase bound to minute particles from supernatant fraction of Propionibacterium arabinosumm. J Biochem. 1972 Aug;72(2):291–297. [PubMed]
  • Sorokin YI. Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria. Nature. 1966 Apr 30;210(5035):551–552. [PubMed]
  • Spangler WJ, Gilmour CM. Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J Bacteriol. 1966 Jan;91(1):245–250. [PMC free article] [PubMed]
  • Spencer ME, Guest JR. Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol. 1973 May;114(2):563–570. [PMC free article] [PubMed]
  • Sperl GT, Hoare DS. Denitrification with methanol: a selective enrichment for Hyphomicrobium species. J Bacteriol. 1971 Nov;108(2):733–736. [PMC free article] [PubMed]
  • Sprecher M, Switzer RL, Sprinson DB. Stereochemistry of the glutamate mutase reaction. J Biol Chem. 1966 Feb 25;241(4):864–867. [PubMed]
  • STADTMAN TC. The participation of a quinone in the enzymic reduction of glycine by Clostridium sticklandii. Biochem Z. 1958;331(1):46–48. [PubMed]
  • Stadtman TC. Glycine reduction to acetate and ammonia: identification of ferredoxin and another low molecular weight acidic protein as components of the reductase system. Arch Biochem Biophys. 1966 Jan;113(1):9–19. [PubMed]
  • Stadtman TC. Methane fermentation. Annu Rev Microbiol. 1967;21:121–142. [PubMed]
  • Stadtman TC. Selenium biochemistry. Science. 1974 Mar 8;183(4128):915–922. [PubMed]
  • Stadtman TC, Renz P. Anaerobic degradation of lysine. V. Some properties of the cobamide coenzyme-dependent beta-lysine mutase of Clostridium sticklandii. Arch Biochem Biophys. 1968 Apr;125(1):226–239. [PubMed]
  • STADTMAN TC, ELLIOTT P, TIEMANN L. Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction. J Biol Chem. 1958 Apr;231(2):961–973. [PubMed]
  • Stouthamer AH. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek. 1973;39(3):545–565. [PubMed]
  • Stouthamer AH. Biochemistry and genetics of nitrate reductase in bacteria. Adv Microb Physiol. 1976;14(11):315–375. [PubMed]
  • Stouthamer AH, Bettenhaussen C. Influence of hydrogen acceptors on growth and energy production of Proteus mirabilis. Antonie Van Leeuwenhoek. 1972;38(1):81–90. [PubMed]
  • Stouthamer AH, Bettenhaussen C. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim Biophys Acta. 1973 Feb 12;301(1):53–70. [PubMed]
  • Sun AY, Ljungdahl L, Wood HG. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Bacteriol. 1969 May;98(2):842–844. [PMC free article] [PubMed]
  • Suzuki T. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. Biochim Biophys Acta. 1969;191(3):559–569. [PubMed]
  • Switzer RL, Barker HA. Purification and characterization of component S of glutamate mutase. J Biol Chem. 1967 Jun 10;242(11):2658–2674. [PubMed]
  • Switzer RL, Baltimore BG, Barker HA. Hydrogen transfer between substrates and deoxyadenosylcobalamin in the glutamate mutase reaction. J Biol Chem. 1969 Oct 10;244(19):5263–5268. [PubMed]
  • SZULMAJSTER J. [Carbamyl phosphate, intermediate in the degradation of creatinine by enzymatic extracts of Eubacterium sarcosinogenum]. Biochim Biophys Acta. 1960 Oct 21;44:173–175. [PubMed]
  • TANIGUCHI S, ITAGAKI E. Nitrate reductase of nitrate respiration type from E. coli. I. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein. Biochim Biophys Acta. 1960 Nov 4;44:263–279. [PubMed]
  • Taylor CD, McBride BC, Wolfe RS, Bryant MP. Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol. 1974 Nov;120(2):974–975. [PMC free article] [PubMed]
  • Taylor CD, Wolfe RS. Structure and methylation of coenzyme M(HSCH2CH2SO3). J Biol Chem. 1974 Aug 10;249(15):4879–4885. [PubMed]
  • Taylor CD, Wolfe RS. A simplified assay for coenzyme M (HSCH2CH2SO3). Resolution of methylcobalamin-coenzyme M methyltransferase and use of sodium borohydride. J Biol Chem. 1974 Aug 10;249(15):4886–4890. [PubMed]
  • Thauer RK. CO(2)-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO(2) in Clostridium thermoaceticum. FEBS Lett. 1972 Oct 15;27(1):111–115. [PubMed]
  • Thauer RK. CO 2 reduction to formate in Clostridium acidi-urici. J Bacteriol. 1973 Apr;114(1):443–444. [PMC free article] [PubMed]
  • Thauer RK, Käufer B, Scherer P. The active species of "CO2" utilized in ferredoxin-linked carboxylation reactions. Arch Microbiol. 1975 Aug 28;104(3):237–240. [PubMed]
  • Thauer RK, Käufer B, Fuchs G. The active species of 'CO2' utilized by reduced ferredoxin:CO2 oxidoreductase from Clostridium pasteurianum. Eur J Biochem. 1975 Jun 16;55(1):111–117. [PubMed]
  • Thauer RK, Kirchniawy FH, Jungermann KA. Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem. 1972 May 23;27(2):282–290. [PubMed]
  • Thauer RK, Rupprecht E, Jungermann K. The synthesis of one-carbon units from CO(2) via a new ferredoxin dependent monocarboxylic acid cycle. FEBS Lett. 1970 Jun 27;8(5):304–307. [PubMed]
  • Thauer RK, Rupprecht E, Jungermann K. Glyoxylate inhibition of clostridial pyruvate synthase. FEBS Lett. 1970 Aug 31;9(5):271–273. [PubMed]
  • Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. The energy metabolism of Clostridium kluyveri. Eur J Biochem. 1968 Apr 3;4(2):173–180. [PubMed]
  • Thauer RK, Jungermann K, Rupprecht E, Decker K. Hydrogen formation from NADH in cell-free extracts of Clostridium kluyveri. Acetyl coenzyme A requirement and ferredoxin dependence. FEBS Lett. 1969 Jul;4(2):108–112. [PubMed]
  • Thauer RK, Rupprecht E, Ohrloff C, Jungermann K, Decker K. Regulation of the reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):954–959. [PubMed]
  • Thayer WS, Hinkle PC. Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart submitochondrial particles. J Biol Chem. 1973 Aug 10;248(15):5395–5402. [PubMed]
  • Thayer WS, Hinkle PC. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem. 1975 Jul 25;250(14):5330–5335. [PubMed]
  • THORNE KJ, JONES ME. CARBAMYL AND ACETYL PHOSPHOKINASE ACTIVITIES OF STREPTOCOCCUS FAECALIS AND ESCHERICHIA COLI. J Biol Chem. 1963 Sep;238:2992–2998. [PubMed]
  • Von Tigerstrom RG, Razzell WE. Aldehyde dehydrogenase. I. Purification and properties of the enzyme from Pseudomonas aeruginosa. J Biol Chem. 1968 May 25;243(10):2691–2702. [PubMed]
  • Tisdale H, Hauber J, Prager G, Turini P, Singer TP. Studies on succinate dehydrogenase. 15. Isolation, molecular properties, and isoenzymes of fumarate reductase. Eur J Biochem. 1968 May;4(4):472–477. [PubMed]
  • Tsai L, Stadtman TC. Anaerobic degradation of lysine. IV. Cobamide coenzyme-dependent migration of an amino group from carbon 6 of beta-lysine (3,6-diaminohexanoate) to carbon 5 forming a new naturally occurring amino acid, 3,5-diaminohexanoate. Arch Biochem Biophys. 1968 Apr;125(1):210–225. [PubMed]
  • Trebst A, Hauska G. Energiekonservierung in der photosynthetischen Membran der Chloroplasten. Naturwissenschaften. 1974 Jul;61(7):308–316. [PubMed]
  • Trudinger PA. Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. J Bacteriol. 1967 Feb;93(2):550–559. [PMC free article] [PubMed]
  • Turner DC, Stadtman TC. Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch Biochem Biophys. 1973 Jan;154(1):366–381. [PubMed]
  • Tuttle JH, Jannasch HW. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria. J Bacteriol. 1973 Sep;115(3):732–737. [PMC free article] [PubMed]
  • TWAROG R, WOLFE RS. Enzymatic phosphorylation of butyrate. J Biol Chem. 1962 Aug;237:2474–2477. [PubMed]
  • TWAROG R, WOLFE RS. ROLE OF BUTYRYL PHOSPHATE IN THE ENERGY METABOLISM OF CLOSTRIDIUM TETANOMORPHUM. J Bacteriol. 1963 Jul;86:112–117. [PMC free article] [PubMed]
  • Tzeng SF, Wolfe RS, Bryant MP. Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium. J Bacteriol. 1975 Jan;121(1):184–191. [PMC free article] [PubMed]
  • Tzing SF, Bryant MP, Wolfe RS. Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium. J Bacteriol. 1975 Jan;121(1):192–196. [PMC free article] [PubMed]
  • Uribe EG, Jagendorf AT. Membrane permeability and internal volume as factors in ATP synthesis by spinach chloroplasts. Arch Biochem Biophys. 1968 Nov;128(2):351–359. [PubMed]
  • Uyeda K, Rabinowitz JC. Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol Chem. 1971 May 25;246(10):3120–3125. [PubMed]
  • VALENTINE RC, WOLFE RS. Purification and role of phosphotransbutyrylase. J Biol Chem. 1960 Jul;235:1948–1952. [PubMed]
  • VALENTINE RC, WOLFE RS. Phosphorolysis of carbamyl oxamic acid. Biochim Biophys Acta. 1960 Dec 4;45:389–391. [PubMed]
  • VALENTINE RC, BOJANOWSKI R, GAUDY E, WOLFE RS. Mechanism of the allantoin fermentation. J Biol Chem. 1962 Jul;237:2271–2277. [PubMed]
  • Riet J van't, Knook DL, Planta RJ. The role of cytochrome b 1 in nitrate assimilation and nitrate respiration in Klebsiella aerogenes. FEBS Lett. 1972 Jun 1;23(1):44–46. [PubMed]
  • Van 't Riet J, Planta RJ. Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes. Biochim Biophys Acta. 1975 Jan 30;379(1):81–94. [PubMed]
  • 't Riet J van, Stouthamer AH, Planta RJ. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. [PMC free article] [PubMed]
  • van Riet J, van Ed JH, Wever R, van Gelder BF, Planta RJ. Characterization of the respiratory nitrate reductase of Klebsiella aerogenes as a molybdenum-containing iron-sulfur enzyme. Biochim Biophys Acta. 1975 Oct 20;405(2):306–317. [PubMed]
  • Veech RL, Raijman L, Krebs HA. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J. 1970 Apr;117(3):499–503. [PubMed]
  • Vega JM, Garrett RH. Siroheme: a prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem. 1975 Oct 25;250(20):7980–7989. [PubMed]
  • Vetter H, Jr, Knappe J. Flavodoxin and ferredoxin of Escherichia coli. Hoppe Seylers Z Physiol Chem. 1971 Mar;352(3):433–446. [PubMed]
  • Vosjan JH. ATP generation by electron transport in Desulfovibrio desulfuricans. Antonie Van Leeuwenhoek. 1970;36(4):584–586. [PubMed]
  • Wagner GC, Kassner RJ, Kamen MD. Redox potentials of certain vitamins K: implications for a role in sulfite reduction by obligately anaerobic bacteria. Proc Natl Acad Sci U S A. 1974 Feb;71(2):253–256. [PubMed]
  • WALKER GC, NICHOLAS DJ. Nitrite reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:350–360. [PubMed]
  • Wallnöfer P, Baldwin RL. Pathway of propionate formation in Bacteroides ruminicola. J Bacteriol. 1967 Jan;93(1):504–505. [PMC free article] [PubMed]
  • Wang CC, Barker HA. Activation of L-citramalate hydrolyase from clostridium tetanomorphum. J Biol Chem. 1969 May 25;244(10):2527–2538. [PubMed]
  • Wang CC, Barker HA. Purification and properties of L-citramalate hydrolyase. J Biol Chem. 1969 May 25;244(10):2516–2526. [PubMed]
  • Ware DA, Postgate JR. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol. 1971 Aug;67(2):145–160. [PubMed]
  • WARRINGA MG, SMITH OH, GIUDITTA A, SINGER TP. Studies on succinic dehydrogenase. VIII. Isolation of a succinic dehydrogenase-fumaric reductase from an obligate anaerobe. J Biol Chem. 1958 Jan;230(1):97–109. [PubMed]
  • Weber MM, Matschiner JT, Peck HD. Menaquinone-6 in the strict anaerobes Desulfovibrio vulgaris and Desulfovibrio gigas. Biochem Biophys Res Commun. 1970 Jan 23;38(2):197–204. [PubMed]
  • Werdan K, Heldt HW. Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta. 1972 Dec 14;283(3):430–441. [PubMed]
  • West IC, Mitchell P. The proton-translocating ATPase of Escherichia coli. FEBS Lett. 1974 Mar 15;40(1):1–4. [PubMed]
  • WHITE DC. THE FUNCTION OF 2-DEMETHYL VITAMIN K2 IN THE ELECTRON TRANSPORT SYSTEM OF HEMOPHILUS PARAINFLUENZAE. J Biol Chem. 1965 Mar;240:1387–1394. [PubMed]
  • White DC, Sinclair PR. Branched electron-transport systems in bacteria. Adv Microb Physiol. 1971;5:173–211. [PubMed]
  • WHITE DC, BRYANT MP, CALDWELL DR. Cytochromelinked fermentation in Bacteroides ruminicola. J Bacteriol. 1962 Oct;84:822–828. [PMC free article] [PubMed]
  • Whiteley HR, Pelroy RA. Purification and properties of phosphotransacetylase from Veillonella alcalescens. J Biol Chem. 1972 Mar 25;247(6):1911–1917. [PubMed]
  • Whitfield CD, Mayhew SG. Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii. J Biol Chem. 1974 May 10;249(9):2801–2810. [PubMed]
  • Whitfield CD, Mayhew SG. Evidence that apo-reduced nicotinamide adenine dinucleotide dehydrogenase and apo-electron-transferring flavoprotein from Peptostreptococcus elsdenii are identical. J Biol Chem. 1974 May 10;249(9):2811–2815. [PubMed]
  • WHITTENBURY R. HYDROGEN PEROXIDE FORMATION AND CATALASE ACTIVITY IN THE LACTIC ACID BACTERIA. J Gen Microbiol. 1964 Apr;35:13–26. [PubMed]
  • Widdel F, Pfennig N. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol. 1977 Feb 4;112(1):119–122. [PubMed]
  • Williams RJ. Proton-driven phosphorylation reactions in mitochondrial and chloroplast membranes. FEBS Lett. 1975 May 1;53(2):123–125. [PubMed]
  • Wilson DF, Stubbs M, Oshino N, Erecińska M. Thermodynamic relationships between the mitochondrial oxidation-reduction reactions and cellular ATP levels in ascites tumor cells and perfused rat liver. Biochemistry. 1974 Dec 17;13(26):5305–5311. [PubMed]
  • Wilson DF, Stubbs M, Veech RL, Erecińska M, Krebs HA. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem J. 1974 Apr;140(1):57–64. [PubMed]
  • Wimpenny JW, Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol. 1972 Jul;111(1):24–32. [PMC free article] [PubMed]
  • Witt HT. Coupling of quanta, electrons, fields, ions and phosphrylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys. 1971 Nov;4(4):365–477. [PubMed]
  • Wolfe RS. Microbial formation of methane. Adv Microb Physiol. 1971;6:107–146. [PubMed]
  • WOLIN MJ, WOLIN EA, JACOBS NJ. Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol. 1961 Jun;81:911–917. [PMC free article] [PubMed]
  • Wolin EA, Wolfe RS, Wolin MJ. Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol. 1964 May;87(5):993–998. [PMC free article] [PubMed]
  • WOLIN MJ, WOLIN EA, WOLFE RS. ATP-DEPENDENT FORMATION OF METHANE FROMMETHYLCOBALAMIN BY EXTRACTS OF METHANOBACILLUS OMELIANSKII. Biochem Biophys Res Commun. 1963 Aug 20;12:464–468. [PubMed]
  • WOLIN EA, WOLIN MJ, WOLFE RS. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed]
  • Wood NP, Jungermann K. Inactivation of the pyruvate formate lyase of Clostridium butyricum. FEBS Lett. 1972 Oct 15;27(1):49–52. [PubMed]
  • Wood JM, Wolfe RS. Propylation and purification of a B12 enzyme involved in methane formation. Biochemistry. 1966 Nov;5(11):3598–3603. [PubMed]
  • Wood JM, Wolfe RS. Components required for the formation of CH-4 from methylcobalamin by extracts of Methanobacillus omelianskii. J Bacteriol. 1966 Sep;92(3):696–700. [PMC free article] [PubMed]
  • Wood JM, Kennedy FS, Rosen CG. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. [PubMed]
  • Wood JM, Kennedy FS, Wolfe RS. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B 12. Biochemistry. 1968 May;7(5):1707–1713. [PubMed]
  • Wood JM, Wolin MJ, Wolfe RS. Formation of methane from methyl factor B and methyl factor 3 by cell-free extracts of Methanobacillus omelianskii. Biochemistry. 1966 Jul;5(7):2381–2384. [PubMed]
  • Wood JM, Allam AM, Brill WJ, Wolfe RS. Formation of methane from serine by cell-free extracts of Methanobacillus omelianskii. J Biol Chem. 1965 Dec;240(12):4564–4569. [PubMed]
  • Yagi T. Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris. J Biochem. 1969 Oct;66(4):473–478. [PubMed]
  • Yagi T, Maruyama K. Purification and properties of cytochrome c 3 of Desulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta. 1971 Aug 27;243(2):214–224. [PubMed]
  • Yagi T, Honya M, Tamiya N. Purification and properties of hydrogenases of different origins. Biochim Biophys Acta. 1968 Apr 2;153(3):699–705. [PubMed]
  • YAMANAKA T. IDENTITY OF PSEUDOMONAS CYTOCHROME OXIDASE WITH PSEUDOMONAS NITRITE REDUCTASE. Nature. 1964 Oct 17;204:253–255. [PubMed]
  • YAMANAKA T, OKUNUKI K. Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to the biological specificity. Biochim Biophys Acta. 1963 Mar 12;67:379–393. [PubMed]
  • YAMANAKA T, OTA A, OKUNUKI K. Oxidative phosphorylation coupled with nitrate respiration. I. Evidence for phosphorylation coupled with nitrate reduciton in a cell-free extract of Pseudomonas aeruginosa. J Biochem. 1962 Apr;51:253–258. [PubMed]
  • Yamamoto T, Tonomura Y. pH jump-induced phosphorylation of adenosine diphosphate in thylakoidal membranes. J Biochem. 1975 Jan 1;77(1?):137–146. [PubMed]
  • Yong FC, King TE. Respiratory control and oxidative phosphorylation of the cytochrome c-cytochrome oxidase complex. Biochem Biophys Res Commun. 1972 Apr 28;47(2):380–386. [PubMed]
  • Zappia V, Barker HA. Studies on lysine-2,3-aminomutase. Subunit structure and sulfhydryl groups. Biochim Biophys Acta. 1970 Jun 23;207(3):505–513. [PubMed]
  • Zeikus JG, Bowen VG. Comparative ultrastructure of methanogenic bacteria. Can J Microbiol. 1975 Feb;21(2):121–129. [PubMed]
  • Zeikus JG, Bowen VG. Fine structure of Methanospirillum hungatii. J Bacteriol. 1975 Jan;121(1):373–380. [PMC free article] [PubMed]
  • Zeikus JG, Wolfe RS. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol. 1972 Feb;109(2):707–715. [PMC free article] [PubMed]
  • Zeikus JG, Wolfe RS. Fine structure of Methanobacterium thermoautotrophicum: effect of growth temperature on morphology and ultrastructure. J Bacteriol. 1973 Jan;113(1):461–467. [PMC free article] [PubMed]
  • Zhilina TN. Tonkoe stroenie metanosartsiny. Mikrobiologiia. 1971 Jul-Aug;40(4):674–680. [PubMed]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)