Search tips
Search criteria 


Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2014 March 10.
Published in final edited form as:
PMCID: PMC3948100

Changes in food insecurity, nutritional status, and physical health status after antiretroviral therapy initiation in rural Uganda



To investigate whether time on antiretroviral treatment (ART) is associated with improvements in food security and nutritional status, and the extent to which associations are mediated by improved physical health status (PHS).


The Uganda AIDS Rural Treatment Outcomes study (UARTO), a prospective cohort of HIV-infected adults newly initiating ART in Mbarara, Uganda.


Participants initiating ART underwent quarterly structured interview and blood draws. The primary explanatory variable was time on ART, constructed as a set of binary variables for each three-month period. Outcomes were food insecurity, nutritional status and PHS. We fit multiple regression models with cluster-correlated robust estimates of variance to account for within-person dependence of observations over time, and analyses were adjusted for clinical and socio-demographic characteristics.


228 ART-naive participants were followed for up to 3 years, and 41% were severely food insecure at baseline. The mean food insecurity score progressively declined (test for linear trend P<0.0001), beginning with the second quarter (b=-1.6; 95% CI, -2.7 to -0.45) and ending with the final quarter (b=-6.4; 95% CI, -10.3 to -2.5). PHS and nutritional status improved in a linear fashion over study follow-up (P<0.001). Inclusion of PHS in the regression model attenuated the relationship between ART duration and food security.


Among HIV-infected individuals in Uganda, food insecurity decreased and nutritional status and PHS improved over time after initiation of ART. Changes in food insecurity were partially explained by improvements in PHS. These data support early initiation of ART in resource-poor settings prior to decline in functional status to prevent worsening food insecurity and its detrimental effects on HIV treatment outcomes.


Food insecurity is highly prevalent in sub-Saharan Africa, especially among people living with HIV/AIDS (PLWHA), where it is estimated that over half of HIV-infected individuals are food insecure.1-3 The food insecurity and HIV/AIDS epidemics are intertwined in a vicious cycle, with each exacerbating vulnerability to and intensifying the severity of the other condition.4, 5 Food insecurity increases vulnerability to HIV infection by driving risky sexual behaviors, contributing to practices that increase mother-to-child transmission, and contributing to general under-nutrition and micronutrient deficiencies that impair mucosal integrity and host defenses.5-8 Among individuals already infected, food insecurity has been associated with worse health outcomes including reduced adherence to antiretroviral therapy (ART),9, 10 worsened virologic and immunologic responses,9, 11-13 more frequent self-reported opportunistic infections,1 declines in physical and mental health status,1, 13 and increased risk of mortality.14 HIV/AIDS, in turn, worsens food insecurity due to death and illness of productive family members, leading to loss of labor, reduced economic capacity, and increased caregiver burden.4, 15-18 Additionally, stigmatized individuals may have more trouble finding work, are less able to rely on social networks for food during times scarcity, and may have more difficulties obtaining loans to alleviate poverty and food insecurity.4, 19, 20

The advent of ART has resulted in large reductions in AIDS-related morbidity and mortality, which may have implications for the overlap between the food insecurity and HIV/AIDS pandemics.21, 22 Some studies from resource-rich settings have shown that physical health status improves substantially shortly after initiation of ART.23-26 Studies from both resource-rich and resource-poor settings have shown that nutritional status often improves substantially on ART, though the results have been somewhat inconsistent.27-30 Theoretically, improved physical health should improve functional status and economic productivity, which in turn could lead to improvements in food security and nutritional status. The negative impacts of HIV-related disruptions in social relationships, however, may still hinder food security after ART initiation. There are little data on the impact of ART initiation on food insecurity in any setting, or on possible mechanisms by which ART initiation may contribute to changes in food insecurity.

To address these gaps in the literature, we undertook a longitudinal study to understand the impact of ART initiation on food insecurity, nutritional status (operationalized by body mass index and mid-upper-arm circumference), and physical health status among HIV-infected individuals initiating ART in rural Uganda. We hypothesized that among ART-naïve individuals in rural Uganda, food insecurity will decrease and nutritional status will improve over time after initiation of antiretroviral therapy. We further hypothesized that changes in food insecurity on ART will be mediated primarily as a result of improved physical health status, and that changes in nutritional status will be mediated by improvements in physical health status and food insecurity. Understanding the impact of ART use on food insecurity and nutritional status among HIV-infected individuals in sub-Saharan Africa can inform food insecurity programs as well as policies for earlier initiation of ART in resource poor settings.


Participants and Study Design

Participants were recruited from the Uganda AIDS Rural Treatment Outcomes (UARTO) study, a prospective cohort of HIV-infected individuals initiating ART free of charge at the Mbarara Regional Referral Hospital Immune Suppression Syndrome (ISS) Clinic in Mbarara, Uganda.31 Patients were eligible for participation if they were about to start ART for the first time, above 18 years of age, and lived within 20 km of the ISS Clinic. Beginning in August 2007, measures of food insecurity were added to the UARTO survey instrument with the aim of understanding the impact of food insecurity on HIV/AIDS outcomes. Therefore all UARTO patients initiating ART after August 2007 were included in the current analysis. Participants were followed until November 2010.

We conducted quarterly assessments using standardized interviewer-administered instruments, detailed anthropometric measurements for nutritional status, and phlebotomy for plasma HIV RNA levels and CD4+ T cell counts. In our questionnaires, we collected information about socio-demographic and clinical characteristics, including food insecurity and physical-health-related quality of life. All surveys were translated and back-translated into Runyankole, and administered by a native Runyankole speaker. Approval for all study procedures was obtained from ethical review boards at the University of California at San Francisco, Partners Healthcare, and Mbarara University of Science and Technology.


The primary explanatory variable was time on ART, constructed as a series of indicator variables for each three-month period subsequent to ART initiation. Our primary outcome, household food insecurity, was measured by the Household Food Insecurity Access Scale (HFIAS), which has been validated in at least 8 countries,32-34 including sub-Saharan African settings. Questions cover several domains of the experience of food insecurity including insufficient food intake, insufficient food quality (variety, preferences of type of food), and anxiety and uncertainty about the household food supply. The internal consistency of this measure was high in this sample, with a Cronbach's alpha of 0.91 at the baseline time point. We used two measures of nutritional status. Body mass index was calculated from weight and height measurements (kg/m2). Mid-upper-arm circumference (MUAC) was measured using a Gulick II tape measure with tensiometer. The study protocol required that at least two measures be taken and recorded. If the difference between the first and second measures exceeded a standardized cutoff according to the Anthropometric Standardization Manual at a specific body site, then a third measure was taken and the average of the two closest measures was used.35 Physical health-related quality of life was measured with the Medical Outcomes Study-HIV Health Survey (MOS-HIV) Physical Health Summary (PHS), validated in several sub-Saharan African settings.26 This measure consists of 35 items grouped into 11 domains, and a higher score reflects a better health-related quality of life.36 This measure has been correlated with AIDS-related events, and has been studied among a variety of patient groups with HIV/AIDS.37 Social support, examined as an additional possible mediator, was measured using the Social Support Scale, 38 a modified version of the Duke-University of North Carolina Functional Social Support Questionnaire. 39 The scale consists of 10 items related to perceived emotional and instrumental support. Each of the items is scored on a 4-point Likert-type scale, and higher scores reflect greater social support. The Cronbach's alpha was 0.91 at baseline, indicating high internal consistency.

We selected baseline socio-demographic and clinical covariates for adjusted models based on prior literature and theory,5, 13, 40, 41 including gender, marital status (married or cohabitating versus other), employment status (employed versus unemployed), educational attainment(at least a high school education versus did not complete high school), number of persons in the participant's household, distance to the Mbarara ISS Clinic in hours of travel time, CD4 cell count measured as a continuous variable in 50-cell increments, and positive screen for heavy drinking as measured by the three-item consumption subset of the Alcohol Use Disorders Identification Test (AUDIT-C).42 To measure household wealth, we used 25 variables denoting household assets and characteristics to create a continuous household asset index following the methodology proposed by Filmer and Pritchett,43 with higher values representing greater household wealth relative to others in the sample.


Data were analyzed with STATA statistical software, version 11.0 (Stata Corporation LP, College Station, TX). We fit multiple linear regression models pooled over observation periods with HFIAS score, BMI, mid-upper-arm circumference, and PHS as the linear dependent variables and cluster-correlated robust estimates of variance to account for within-person dependence of observations over time. Estimates were adjusted for potential confounding by socio-demographic and clinical variables measured at baseline. A Wald-type F-test was used to assess the joint statistical significance of the time indicator variables. A test for linear trend in the time indicator variables was performed by refitting the adjusted model with duration of ART specified as a continuous variable.

To determine whether changes in food insecurity over time were potentially explained by changes in physical health status, we also included concurrent PHS in the models as a time-dependent variable and then re-assessed the estimates and statistical significance of the time indicator variables. Using similar methods, we also investigated: (a) whether changes in social support potentially explain changes in food insecurity (in light of prior work showing that higher social support and social capital may be associated with decreased food insecurity)44-46, and (b) whether changes in food insecurity and/or PHS potentially explain changes in nutritional status.


In total, 257 participants were ART naïve at baseline and were eligible for inclusion in the analysis. Of this group, 29 participants were excluded due to having incomplete data on any of our primary outcomes of interest, with a remaining sample of 228 individuals included in the current analysis. Out of the 228 individuals included in our analysis, 8 died and 28 were lost to follow-up. Among the 29 excluded individuals, 6 died and 8 were lost to follow-up. While there was a statistically significant difference between the included and excluded participants in terms of death and lost to follow-up (X2=17.2, p<0.001) the included and excluded participants had no statistically significant differences in terms of our key outcomes of interest including HFIAS, PHS, BMI, and MUAC (p values ranged from 0.2 to 0.9). Depending on their date of enrollment, at the time of this analysis participants had been monitored for 3 months to 3 years after initiation of ART, with a median follow up time of 1.8 years.

The majority of participants were female (161 [71%]). At baseline, the mean age was 34.4 (standard deviation [SD] 8.7), 53 participants (23%) had achieved a secondary education, and 101 participants (44%) were married (Table 1). The mean baseline CD4 count was 185.1 (SD=122.4), and median CD4 count at ART initiation was 161. The mean HFIAS score was 8.8, with 185 participants (81%) categorized as food insecure, 74 (33%) as moderately food insecure, and 97 (43%) as severely food insecure. At baseline 14% had a BMI<18.5 kg/m2, and 11% had MUAC consistent with malnutrition (<22 cm for females, <23 cm for males).

Table 1
Characteristics of Participants at Baseline (N= 228)

Food insecurity decreased steadily over time after ART initiation (Table 2, Figure 1). In adjusted analyses, the mean HFIAS score at nearly every time point was lower than the preceding time point, beginning with the second quarter (=-1.7; 95% CI, -2.8 to -0.6) and ending with the final quarter (b=-6.5; 95% CI, -10.4 to -2.7). F-tests for the joint statistical significance of the time indicator variables and for a linear trend in them were also statistically significant (P<0.001). Of the 86 individuals who were severely food insecure at baseline and provided at least one year's worth of follow-up data, only 36 (42%) remained severely food insecure after one year on ART.

Figure 1
Unadjusted trends in food insecurity after initiation of ART.
Table 2
Time Trends in Food Insecurity (HFIAS) Subsequent to ART Initiation among Adults in Rural Uganda (N=228)

At baseline, the mean PHS was 43.1 (SD= 11.9) and this increased subsequent to ART initiation (Table 3). After statistical adjustment for baseline socio-demographic and clinical variables, the mean PHS was greater at every time point, beginning with the first quarter (b=5.2; 95% CI, 3.1 to 7.4) and ending with the last quarter (b=11.9; 95% CI, 3.1 to 20.6). F-tests for the joint statistical significance of the time indicator variables and for a linear trend in them were statistically significant (P<0.001).

Table 3
Time Trends in Physical Health Status (MOS-HIV) Subsequent to ART Initiation among Adults in Rural Uganda (N=228)

Nutritional status improved over time after ART initiation (Table 3). In adjusted analysis, BMI increased at nearly every time point, beginning with the second quarter (b=0.7; 95% CI, 0.2 to 1.1) and ending with the last quarter (b=5.3; 95% CI, 0.1 to 10.5). Similarly, MUAC increased at nearly every time point, beginning with the second quarter (b=0.9; 95% CI, 0.4 to 1.4) and ending with the last quarter (b=1.4; 95% CI, 0.1 to 2.7). F-tests for the joint statistical significance of time indicator variables and for a linear trend in them for both nutritional outcomes were also statistically significant (P<0.001).

Improvements in physical health status partially explained the decreases in food insecurity over time. When PHS was added to the regression models examining trends in food insecurity over time, the time indicator variables were no longer statistically significant as a group (P= 0.37) and the magnitude of the regression coefficients decreased by approximately 40% (Table 2, column 3). Conversely, when social support was added to the regression models examining trends in food security over time, the time indicator variables were still statistically significant as a group, and the regression coefficients were not attenuated, suggesting no mediation (Table 2, column 4). For BMI or MUAC, when either PHS or food insecurity were added to the models, the time indicator variables were still statistically significant as a group, and the regression coefficients were only minimally attenuated suggesting minimal mediation (Table 4, columns 2 and 4).

Table 4
Time Trends in Nutritional Health Status Subsequent to ART Initiation among Adults in Rural Uganda (N=228)


In this analysis of data from PLWHA initiating ART in rural Uganda, we found that food insecurity decreased and nutritional status increased after initiation of ART. Physical health status also improved, and changes in physical health status partially explained the observed trends in food insecurity but not in nutritional status. These findings have several important implications for food-insecurity programming as well as for policies on early initiation of ART in resource poor settings.

The striking declines in food insecurity we observed subsequent to ART initiation are of substantive importance given the high prevalence of food insecurity among HIV-infected individuals, as well as the known negative impacts of food insecurity on HIV/AIDS morbidity and mortality.1, 2, 11, 14 HIV/AIDS devastates affected households economically, by debilitating prime-working age household members and by increasing out-of-pocket medical expenses and caregiver burden.4, 15, 16, 20 Our results suggest that ART may be able to reverse some of these negative trends in food insecurity, and are consistent with recent work in India showing substantial improvements in employment and income within the first 2 years after ART initiation,47 and with a study in Kenya showing a 20% increase in the likelihood of being employed and a 35% increase in hours worked within 6 months after ART initiation.48 The attenuation of food insecurity on ART seen in this study also highlights that a substantial proportion of food insecurity among HIV-infected individuals in the region is likely HIV-related.

Our findings related to changes in physical health status for individuals on ART are consistent with studies from resource-rich settings that found substantial improvements in physical health status after initiation of ART, although these results have not been entirely consistent, and prior studies on this topic have been limited by shorter length of follow-up.23-25, 49, 50 Our findings add to the literature by suggesting that these trends also apply to resource poor settings,26, 51 and over longer follow-up durations.24 Similarly, while our findings that nutritional status improves on ART are supported by previous studies, results have been inconsistent in different populations and settings, with weight loss and wasting persisting on ART among certain groups.27-30

The mechanisms underlying the changes in food insecurity remain unclear, but we hypothesized that improved physical health status contributes to improved food security by earlier return to work and engagement in food-generating activities. In our analysis, the time trend in food insecurity was no longer statistically significant after the addition of PHS to the model, consistent with this hypothesis. This finding fits with those of a qualitative study in Uganda suggesting that adherence to ART may be accompanied by decreased food insecurity as a result of improved physical health and ability to work.10 Future studies should further evaluate this hypothesis by including changes in work status as a possible mediator of trends in food security. A second channel through which ART may decrease food insecurity is through social reintegration resulting in enhanced ability to draw on social networks for assistance during times of shortage.19, 41, 52 We investigated whether changes in social support on ART partially explained the decreases in food insecurity on ART, and saw no evidence of mediation by social support. In our analysis, improvements in measures of nutritional status did not appear to be mediated by improved physical health status or food insecurity as measured by the food security scale, suggesting other mechanisms such as the amelioration of HIV-associated wasting with suppressed viral loads on ART or dietary improvements, which are required for regaining lost tissues, and are not well reflected in the food security scale. Future studies should examine these mechanisms more fully to help elucidate the pathways through which nutritional status improves on ART.

Our findings have several important policy implications. In countries with increasing availability of ART, maximizing quality of life and nutritional status are becoming increasing priorities as individuals live longer.51, 53 In view of the marked decreases seen in food insecurity and improvements in nutritional status after ART initiation, programs aimed at decreasing food insecurity among HIV-infected individuals should consider earlier initiation of ART as part of their strategy. While important barriers still exist for scaling up ART to reach all currently eligible individuals, recent studies have also shown that initiating ART at CD4 counts higher than current guidelines (≥350) show substantial benefits in terms of reducing morbidity and mortality among HIV-infected individuals and preventing secondary HIV transmission.54-56 Our study also supports recent findings from a study in Malawi showing that prompt ART following an outpatient therapeutic feeding program for children improved nutritional recovery compared to individuals that did not receive prompt ART.57 Future studies should also evaluate benefits of ART initiation on food insecurity, nutritional status, and physical health status among individuals with higher baseline CD4 cell counts.

Our findings should be not be interpreted to mean that ART alone is sufficient to ensure adequate food and nutrition for HIV-infected patients. Even after 2 years on ART, a large proportion of the participants in our study were still food-insecure. Other studies have shown that food insecurity and malnutrition are still highly prevalent among HIV-infected individuals stably on ART.10, 58 A recent study from Zambia and Kenya similarly reported that livelihoods and economic security still lag among individuals on ART.59 Among individuals stably on ART, food insecurity is still associated with depression,60 worse immunologic, and virologic outcomes, ART non-adherence, higher incidence of serious illness, and mortality.1, 9, 12-14 These data support that ART treatment alone is insufficient for fully reversing the negative impacts of food insecurity on HIV/AIDS morbidity and mortality, and that in many settings interventions to improve food security and nutritional support are urgently needed regardless of timing of ART initiation.

Since food security, nutritional status, and physical health status were most compromised during the early phases of ART initiation among participants in our study, these findings lend support to claims by policymakers and program developers that provision of food and nutritional support may be most critical during the earlier phases of ART initiation, when health status is most compromised and engagement in livelihood programs may be more challenging.61 This hypothesis requires further testing in controlled trials. Small trials from Haiti and Uganda have shown significant improvements in food security, nutritional status, adherence, and engagement in care among individuals receiving food supplementation during the first 12 months after ART initiation.62, 63. The optimal strategy to simultaneously reduce HIV/AIDS morbidity and improve food insecurity likely involves better integration of programs aimed to reduce food insecurity with HIV/AIDS treatment programs.

This study had several limitations. First, we did not have access to a comparison group that was not using ART. The observed trends in food security and nutritional/physical health status could theoretically be explained by secular trends over the three-year period such as engagement in clinical care and associated programs. Yet, food prices have increased 50% in recent years in Uganda, suggesting higher, rather than lower, vulnerability to food insecurity 64. In addition, in our sample less than 1% of participants were receiving governmental or nongovernmental food aid either at baseline or during follow-up, suggesting that increased access to food aid is unlikely to account for the observed trends. Second, while there were no differences between included and excluded individuals in terms of our key outcomes of interest, we can not rule out that attrition from the cohort by some of the sickest and most food-insecure participants may have biased our findings away from the null. Third, assessment of mediation with the analytic strategy employed in our analysis is subject to the assumptions that: a) there is no unmeasured confounding, including confounding of the relationship between the mediator and the outcome when conditioning on the mediator, b) the direction of causality is from physical health status to food insecurity as discussed above, and c) there is no correlation of measurement errors for food insecurity and physical status, both of which were measured by self-report. If people who over-report food insecurity also over-report difficulties with physical health, this could bias our estimate of the extent to which improved physical health mediates the observed trends in food insecurity away from the null.65-67 In addition, the small sample size may make it more difficult to fully assess mediation in this study.

In conclusion, we found that among HIV-infected individuals in rural Uganda, food insecurity declined and nutritional status improved continuously subsequent to initiation of ART. Changes in food insecurity, but not nutritional status, were largely explained by improvements in physical health status. Since food insecurity is associated with worse HIV health outcomes and increased risk of HIV transmission, our data further bolster the rationale for early initiation of ART in resource-poor settings coupled with measures to improve food and nutrition security.


We thank the Uganda AIDS Rural Treatment Outcomes study participants who made this study possible by sharing their experiences; Annet Kembabazi for providing study coordination and administrative support; and Doreen Akello, Marcy Mutumba, Christine Ngabirano, Ruth Ssentongo, and Florence Turyashemererwa for research assistance. We also thank Dr. Nozmo Mukiibi, Dr. Jude K. Senkungu, and Dr. Jessica Haberer for providing invaluable input on all aspects of study design and implementation; and Abbey Hatcher, Maureen Forsythe and Dr. Saskia de Pee, for critical comments on the manuscript. While these individuals are acknowledged for their assistance, no endorsement of manuscript contents or conclusions should be inferred.

Funding: The study was funded by NIH K23 MH-079713 (PI: Weiser), MH-79713-03S1 (PI: Weiser), R01 MH-54907 (PI: Bangsberg), P30 AI27763(UCSF-Gladstone Institute Center for AIDS Research), and the Tim and Jane Meyer Family Foundation. Additional funding for study analyses was provided by the World Food Programme. The authors acknowledge the following additional sources of salary support: the Burke Family Foundation (to Dr. Weiser), K24 MH-87227 (to Dr. Bangsberg), and the Robert Wood Johnson Health and Society Scholars Program (to Dr. Tsai).


Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


1. Weiser SD, Tsai AC, Gupta R, Frongillo EA, Kawuma A, Senkungu J, et al. Food insecurity is associated with morbidity and patterns of healthcare utilization among HIV-infected individuals in a resource-poor setting. AIDS. 2012;26(1):67–75. [PMC free article] [PubMed]
2. Nagata JM, Magerenge RO, Young SL, Oguta JO, Weiser SD, Cohen CR. Social determinants, lived experiences, and consequences of household food insecurity among persons living with HIV/AIDS on the shore of Lake Victoria, Kenya. AIDS Care. 2011 [PubMed]
3. Addo AA, Marquis GS, Lartey AA, Perez-Escamilla R, Mazur RE, Harding KB. Food insecurity and perceived stress but not HIV infection are independently associated with lower energy intakes among lactating Ghanaian women. Matern Child Nutr. 2011;7(1):80–91. [PMC free article] [PubMed]
4. Gillespie S, Kadiyala S. [cited 2008 September, 23];HIV/AIDS and food and nutrition security: from evidence to action. 2005 Available from:
5. Weiser SD, Young SL, Cohen CR, Kushel MB, Tsai AC, Tien PC, et al. Conceptual framework for understanding the bidirectional links between food insecurity and HIV/AIDS. Am J Clin Nutr. 2011;94(6):1729S–39S. [PubMed]
6. Weiser SD, Leiter K, Bangsberg DR, Butler LM, Percy-de Korte F, Hlanze Z, et al. Food insufficiency is associated with high-risk sexual behavior among women in Botswana and Swaziland. PLoS Med. 2007;4(10):1589–97. discussion 98. [PMC free article] [PubMed]
7. Campbell AA, de Pee S, Sun K, Kraemer K, Thorne-Lyman A, Moench-Pfanner R, et al. Relationship of household food insecurity to neonatal, infant, and under-five child mortality among families in rural Indonesia. Food Nutr Bull. 2009;30(2):112–9. [PubMed]
8. Webb-Girard A, Cherobon A, Mbugua S, Kamau-Mbuthia E, Amin A, Sellen DW. Food insecurity is associated with attitudes towards exclusive breastfeeding among women in urban Kenya. Matern Child Nutr. 2010 [PubMed]
9. Kalichman SC, Cherry C, Amaral C, White D, Kalichman MO, Pope H, et al. Health and treatment implications of food insufficiency among people living with HIV/AIDS, Atlanta, Georgia. J Urban Health. 2010;87(4):631–41. [PMC free article] [PubMed]
10. Weiser SD, Tuller DM, Frongillo EA, Senkungu J, Mukiibi N, Bangsberg DR. Food insecurity as a barrier to sustained antiretroviral therapy adherence in Uganda. PLoS One. 2010;5(4):e10340. [PMC free article] [PubMed]
11. Wang EA, McGinnis KA, Fiellin DA, Goulet JL, Bryant K, Gibert CL, et al. Food insecurity is associated with poor virologic response among HIV-infected patients receiving antiretroviral medications. J Gen Intern Med. 2011;26(9):1012–8. [PMC free article] [PubMed]
12. Weiser SD, Frongillo EA, Ragland K, Hogg RS, Riley ED, Bangsberg DR. Food insecurity is associated with incomplete HIV RNA suppression among homeless and marginally housed HIV-infected individuals in San Francisco. J Gen Intern Med. 2009;24(1):14–20. [PMC free article] [PubMed]
13. Weiser SD, Bangsberg DR, Kegeles S, Ragland K, Kushel MB, Frongillo EA. Food insecurity among homeless and marginally housed individuals living with HIV/AIDS in San Francisco. AIDS Behav. 2009;13(5):841–8. [PMC free article] [PubMed]
14. Weiser SD, Fernandes KA, Brandson EK, Lima VD, Anema A, Bangsberg DR, et al. The association between food insecurity and mortality among HIV-infected individuals on HAART. J Acquir Immune Defic Syndr. 2009;52(3):342–9. [PMC free article] [PubMed]
15. Hosegood V, Preston-Whyte E, Busza J, Moitse S, Timaeus IM. Revealing the full extent of households' experiences of HIV and AIDS in rural South Africa. Soc Sci Med. 2007;65(6):1249–59. [PMC free article] [PubMed]
16. Russell S. The economic burden of illness for households in developing countries: a review of studies focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome. Am J Trop Med Hyg. 2004;71(2 Suppl):147–55. [PubMed]
17. Bachmann MO, Booysen FL. Economic causes and effects of AIDS in South African households. AIDS. 2006;20(14):1861–7. [PubMed]
18. Bachmann MO, Booysen FL. Health and economic impact of HIV/AIDS on South African households: a cohort study. BMC Public Health. 2003;3:14. [PMC free article] [PubMed]
19. Kaschula S. Using people to cope with the hunger: social networks and food transfers amongst HIV/AIDS afflicted households in KwaZulu-Natal, South Africa. AIDS Behav. 2011;15(7):1490–502. [PubMed]
20. de Waal A, Whiteside A. New variant famine: AIDS and food crisis in southern Africa. Lancet. 2003;362(9391):1234–7. [PubMed]
21. Hogg RS, O'Shaughnessy MV, Gataric N, Yip B, Craib K, Schechter MT, et al. Decline in deaths from AIDS due to new antiretrovirals. Lancet. 1997;349(9061):1294. [PubMed]
22. Hogg RS, Heath KV, Yip B, Craib KJ, O'Shaughnessy MV, Schechter MT, et al. Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. JAMA. 1998;279(6):450–4. [PubMed]
23. Carrieri P, Spire B, Duran S, Katlama C, Peyramond D, Francois C, et al. Health-related quality of life after 1 year of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2003;32(1):38–47. [PubMed]
24. Nieuwkerk PT, Gisolf EH, Colebunders R, Wu AW, Danner SA, Sprangers MA. Quality of life in asymptomatic- and symptomatic HIV infected patients in a trial of ritonavir/saquinavir therapy. The Prometheus Study Group. AIDS. 2000;14(2):181–7. [PubMed]
25. Mannheimer SB, Matts J, Telzak E, Chesney M, Child C, Wu AW, et al. Quality of life in HIV-infected individuals receiving antiretroviral therapy is related to adherence. AIDS Care. 2005;17(1):10–22. [PubMed]
26. Stangl AL, Wamai N, Mermin J, Awor AC, Bunnell RE. Trends and predictors of quality of life among HIV-infected adults taking highly active antiretroviral therapy in rural Uganda. AIDS Care. 2007;19(5):626–36. [PubMed]
27. Wanke CA, Silva M, Knox TA, Forrester J, Speigelman D, Gorbach SL. Weight loss and wasting remain common complications in individuals infected with human immunodeficiency virus in the era of highly active antiretroviral therapy. Clin Infect Dis. 2000;31(3):803–5. [PubMed]
28. Saghayam S, Kumarasamy N, Cecelia AJ, Solomon S, Mayer K, Wanke C. Weight and body shape changes in a treatment-naive population after 6 months of nevirapine-based generic highly active antiretroviral therapy in South India. Clin Infect Dis. 2007;44(2):295–300. [PubMed]
29. Salomon J, De TP, Melchior JC. Nutrition and HIV infection. Br J Nutr. 2002;87(Suppl 1):S111–9. [PubMed]
30. Koenig SP, Leandre F, Farmer PE. Scaling-up HIV treatment programmes in resource-limited settings: the rural Haiti experience. AIDS. 2004;18(Suppl 3):S21–5. [PubMed]
31. Geng EH, Bwana MB, Kabakyenga J, Muyindike W, Emenyonu NI, Musinguzi N, et al. Diminishing availability of publicly funded slots for antiretroviral initiation among HIV-infected ART-eligible patients in Uganda. PLoS One. 2010;5(11):e14098. [PMC free article] [PubMed]
32. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for measurement of food access: indicator guide. Washington, D.C.: Food and Nutrition Technical Assistance Project, Academy for Educational Development; 2006.
33. Frongillo EA, Nanama S. Development and Validation of an Experience-Based Measure of Household Food Insecurity within and across Seasons in Northern Burkina Faso. J Nutr. 2006;136(5):1409S–19S. [PubMed]
34. Swindale A, Bilinsky P. Development of a universally applicable household food insecurity measurement tool: process, current status, and outstanding issues. J Nutr. 2006;136(5):1449S–52S. [PubMed]
35. Cogil B. Anthropometric Indicators Measurement Guide. Washington, D.C.: Food and Nutrition Technical Assistance Project, Academy for Educational Development; 2003.
36. Wu AW, Rubin HR, Mathews WC, Ware JE, Jr, Brysk LT, Hardy WD, et al. A health status questionnaire using 30 items from the Medical Outcomes Study. Preliminary validation in persons with early HIV infection. Med Care. 1991;29(8):786–98. [PubMed]
37. Wu AW, Revicki DA, Jacobson D, Malitz FE. Evidence for reliability, validity and usefulness of the Medical Outcomes Study HIV Health Survey (MOS-HIV) Qual Life Res. 1997;6(6):481–93. [PubMed]
38. Antelman G, Smith Fawzi MC, Kaaya S, Mbwambo J, Msamanga GI, Hunter DJ, et al. Predictors of HIV-1 serostatus disclosure: a prospective study among HIV-infected pregnant women in Dar es Salaam, Tanzania. AIDS. 2001;15(14):1865–74. [PubMed]
39. Broadhead WE, Gehlbach SH, de Gruy FV, Kaplan BH. The Duke-UNC Functional Social Support Questionnaire. Measurement of social support in family medicine patients. Med Care. 1988;26(7):709–23. [PubMed]
40. Anema A, Vogenthaler N, Frongillo EA, Kadiyala S, Weiser SD. Food insecurity and HIV/AIDS: current knowledge, gaps, and research priorities. Curr HIV/AIDS Rep. 2009;6(4):224–31. [PubMed]
41. Tsai AC, Bangsberg DR, Emenyonu N, Senkungu JK, Martin JN, Weiser SD. The social context of food insecurity among persons living with HIV/AIDS in rural Uganda. Soc Sci Med. 2011;73(12):1717–24. [PMC free article] [PubMed]
42. Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch Intern Med. 1998;158(16):1789–95. [PubMed]
43. Filmer D, Pritchett LH. Estimating wealth effects without expenditure data -- or tears: an application to educational enrollments in states of India. Demography. 2001;38(1):115–32. [PubMed]
44. Hadley C, Mulder MB, Fitzherbert E. Seasonal food insecurity and perceived social support in rural Tanzania. Public Health Nutr. 2007;10(6):544–51. [PubMed]
45. Dean WR, Sharkey JR. Food insecurity, social capital and perceived personal disparity in a predominantly rural region of Texas: an individual-level analysis. Soc Sci Med. 2011;72(9):1454–62. [PMC free article] [PubMed]
46. Dean WR, Sharkey JR, Johnson CM. Food insecurity is associated with social capital, perceived personal disparity, and partnership status among older and senior adults in a largely rural area of central Texas. J Nutr Gerontol Geriatr. 2011;30(2):169–86. [PubMed]
47. Thirumurthy H, Jafri A, Srinivas G, Arumugam V, Saravanan RM, Angappan SK, et al. Two-year impacts on employment and income among adults receiving antiretroviral therapy in Tamil Nadu, India: a cohort study. AIDS. 2011;25(2):239–46. [PubMed]
48. Thirumurthy H, Zivin JG, Goldstein M. The Economic Impact of AIDS Treatment: Labor Supply in Western Kenya. J Hum Resour. 2008;43(3):511–52. [PMC free article] [PubMed]
49. Low-Beer S, Chan K, Wood E, Yip B, Montaner JS, O'Shaughnessy MV, et al. Health related quality of life among persons with HIV after the use of protease inhibitors. Qual Life Res. 2000;9(8):941–9. [PubMed]
50. Casado A, Consiglio E, Podzamczer D, Badia X. Highly active antiretroviral treatment (HAART) and health-related quality of life in naive and pretreated HIV-infected patients. HIV Clin Trials. 2001;2(6):477–83. [PubMed]
51. Jelsma J, Maclean E, Hughes J, Tinise X, Darder M. An investigation into the health-related quality of life of individuals living with HIV who are receiving HAART. AIDS Care. 2005;17(5):579–88. [PubMed]
52. Okoror TA, Airhihenbuwa CO, Zungu M, Makofani D, Brown DC, Iwelunmor J. “My mother told me I must not cook anymore”--food, culture, and the context of HIV- and AIDS-related stigma in three communities in South Africa. Int Q Community Health Educ. 2007;28(3):201–13. [PMC free article] [PubMed]
53. UNAIDS. AIDS Epidemic Update: sub-Saharan Africa Fact Sheet. Geneva: WHO and UNAIDS; 2009.
54. Sterne JA, May M, Costagliola D, de Wolf F, Phillips AN, Harris R, et al. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet. 2009;373(9672):1352–63. [PMC free article] [PubMed]
55. Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med. 2009;360(18):1815–26. [PMC free article] [PubMed]
56. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505. [PMC free article] [PubMed]
57. Kim MH, Cox C, Dave A, Draper HR, Kabue M, Schutze GE, et al. Prompt Initiation of ART With Therapeutic Food Is Associated With Improved Outcomes in HIV-Infected Malawian Children With Malnutrition. J Acquir Immune Defic Syndr. 2012;59(2):173–6. [PubMed]
58. Sunguya BF, Poudel KC, Otsuka K, Yasuoka J, Mlunde LB, Urassa DP, et al. Undernutrition among HIV-positive children in Dar es Salaam, Tanzania: antiretroviral therapy alone is not enough. BMC Public Health. 2011;11:869. [PMC free article] [PubMed]
59. Samuels FA, Rutenberg N. “Health regains but livelihoods lag”: findings from a study with people on ART in Zambia and Kenya. AIDS Care. 2011;23(6):748–54. [PubMed]
60. Tsai AC, Bangsberg DR, Frongillo EA, Hunt PW, Muzoora C, Martin JN, et al. Food insecurity, depression and the modifying role of social support among people living with HIV/AIDS in rural Uganda. Soc Sci Med. 2012 [PMC free article] [PubMed]
61. Yager JE, Kadiyala S, Weiser SD. HIV/AIDS, food supplementation and livelihood programs in Uganda: a way forward? PLoS One. 2011;6(10):e26117. [PMC free article] [PubMed]
62. Ivers LC, Chang Y, Gregory Jerome J, Freedberg KA. Food assistance is associated with improved body mass index, food security and attendance at clinic in an HIV program in central Haiti: a prospective observational cohort study. AIDS Res Ther. 2010;7:33. [PMC free article] [PubMed]
63. Cantrell RA, Sinkala M, Megazinni K, Lawson-Marriott S, Washington S, Chi BH, et al. A pilot study of food supplementation to improve adherence to antiretroviral therapy among food-insecure adults in Lusaka, Zambia. J Acquir Immune Defic Syndr. 2008;49(2):190–5. [PMC free article] [PubMed]
64. WFP. Comprehensive Food Security & Vulnerability Analysis (CFSVA) - Uganda. Rome, Italy: World Food Programme; 2009.
65. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3(2):143–55. [PubMed]
66. Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17(3):276–84. [PubMed]
67. VanderWeele TJ. Marginal structural models for the estimation of direct and indirect effects. Epidemiology. 2009;20(1):18–26. [PubMed]