PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of digimagwww.springer.comThis JournalToc AlertsSubmit OnlineOpen Choice
 
J Digit Imaging. 2002 March; 15(1): 5–14.
Published online 2002 April 30. doi:  10.1007/s10278-002-0001-z
PMCID: PMC3946081

Irreversible Compression of Medical Images

Abstract

The volume of data from medical imaging is growing at exponential rates, matching or exceeding the decline in the costs of digital data storage. While methods to reversibly compress image data do exist, current methods only achieve modest reductions in storage requirements. Irreversible compression can achieve substantially higher compression ratios without perceptible image degradation. These techniques are routinely applied in teleradiology, and often in Picture Archiving and Communications Systems. The practicing radiologist needs to understand how these compression techniques work and the nature of the degradation that occurs in order to optimize their medical practice. This paper describes the technology and artifacts commonly used in irreversible compression of medical images.

Full Text

The Full Text of this article is available as a PDF (587K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Karson TH, Chandra S, Morehead AJ, et al. JPEG compression of digital echocardiographic images: Impact on image quality. J Am Soc Echocardiography. 1995;8:306–318. doi: 10.1016/S0894-7317(05)80041-0. [Cross Ref]
2. Wallace GK. The JPEG still picture compression standard. Comm of the ACM. 1991;34:30–44. doi: 10.1145/103085.103089. [Cross Ref]
3. Gillespy T, 3rd, Rowberg AH. Displaying radiologic images on personal computers: Image storage and compression - Part 2 [published erratum appears in J Digit Imaging 1994 2:60] J Digi Imaging. 1994;7:1–12. doi: 10.1007/BF03168473. [Cross Ref]
4. Manduca A. Interactive wavelet-based 2-D and 3-D image compression. Proc SPIE. 1993;1897:307–318. doi: 10.1117/12.146980. [Cross Ref]
5. Antonini M, Barlaud M, Mathieu P, et al. Image coding using wavelet transform. IEEE Trans Image Proc. 1992;1:205–220. doi: 10.1109/83.136597. [Cross Ref]
6. Villasensor J, Belzer B, Liao J. Wavelet filter evaluation for image compression. IEEE Trans Image Proc. 1995;4:1053–1060. doi: 10.1109/83.403412. [Cross Ref]
7. Shapiro JM. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Proc. 1993;41:3445–3462. doi: 10.1109/78.258085. [Cross Ref]
8. Said A, Pearlman W. Image compression using the spatial-orientation tree, in IEEE Intl Symp on Circuits and Systems. Piscataway, NJ: IEEE Press; 1993. pp. 279–282.
9. Said A, Pearlman W. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits and Systems for Video Technology. 1996;6:243–250. doi: 10.1109/76.499834. [Cross Ref]
10. Donoho DI, Johnstone IM. Ideal denoising in an orthonormal basis chosen from a library of bases. Comptes Rendus Acad Sci. 1994;319:1317–1322.
11. Erickson BJ, Manduca A, Persons KR, et al. Evaluation of irreversible compression of digitized PA chest radiographs. J Digit Imaging. 1997;10:97–102. doi: 10.1007/BF03168595. [PMC free article] [PubMed] [Cross Ref]
12. Savcenko V, Erickson BJ, Palisson PM, et al. Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology. 1998;206:609–616. [PubMed]
13. Slone R, Foos D, Whiting B, et al. Assessment of visually lossless irreversible image compression: Comparison of three methods by using an image-comparison workstation. Radiology. 2000;215:543–553. doi: 10.1148/radiology.215.2.r00ap47543. [PubMed] [Cross Ref]
14. Persons KR, Palisson P, Manduca A, et al. An analytical look at the effects of compression on medical images. J Digit Imaging. 1997;10:60–66. doi: 10.1007/BF03168659. [PMC free article] [PubMed] [Cross Ref]
15. Erickson B, Campeau N, Huston J, et al. Effects of irreversible compression on Neuro CT and MR Images. Atlanta, GA: American Society of NeuroRadiology; 2000.
16. Girod B. What’s wrong with mean-squared error? In: Watson A, editor. Digital Images and Human Vision (edl) Cambridge, MA: MIT Press; 1993. pp. 207–220.
17. Barren P. Evaluation of the effect of noise on subjective image quality. Proc SPIE 1991. 1991;1453:2–15. doi: 10.1117/12.44340. [Cross Ref]
18. Nill N, Bouzas B. Objective image quality measure derived from digital image power spectra. Optical Engineering. 1992;31:813–825. doi: 10.1117/12.56114. [Cross Ref]
19. Good W, Lattner S, Maitz G. Evaluation of image compression using plausible “non visually weighted” image fidelity measures. Proc SPIE 1996. 1996;2707:301–309. doi: 10.1117/12.238458. [Cross Ref]
20. Lattner S, Good W, Maitz G. Visually weighted assessment of image degradation resulting from image compression. Proc SPIE 1996. 1996;2707:507–518. doi: 10.1117/12.238481. [Cross Ref]
21. Ishigaki T, Sakuma S, Ikeda M, et al. Clinical evaluation of irreversible image compression: Analysis of chest imaging with computed radiography. Radiology. 1990;175:739–743. [PubMed]
22. Goldberg MA, Gazelle GS, Boland GW, et al. Focal hepatic lesions: Effect of three-dimensional wavelet compression on detection at CT. Radiology. 1997;202:159–165. [PubMed]
23. Clunie DA, Mitchell PJ, Howieson J, et al. Detection of discrete white matter lesions after irreversible compression of MR images. Am J Neuroradiol. 1995;16:1435–1440. [PubMed]
24. Good WF, Maitz GS, Gur D. Joint photographic experts group (JPEG) compatible data compression of mammograms. J Digit Imaging. 1994;7:123–132. doi: 10.1007/BF03168505. [PubMed] [Cross Ref]
25. Cosman PC, Gray RM, Olshen RA. Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc IEEE. 1994;82:919–932. doi: 10.1109/5.286196. [Cross Ref]
26. Elion JL, Whiting JS. Clinical use of lossy image compression in digital angiography [editorial; comment] Am J Cardiol. 1996;78:219–220. doi: 10.1016/S0002-9149(96)90400-2. [PubMed] [Cross Ref]
27. Goldberg MA, Pivovarov M, Mayo-Smith WW, et al. Application of wavelet compression to digitized radiographs. AJR Am J Roentgenol. 1994;163:463–468. doi: 10.2214/ajr.163.2.8037051. [PubMed] [Cross Ref]
28. Rebelo MS, Furuie SS, Munhoz AC, et al. Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care. 1993. Lossy compression in nuclear medicine images.
29. Foos D, Muka E, Slone R, et al. The International Society For Optical Engineering (SPIE) 2000. JPEG 2000 compression of medical imagery.
30. Savcenko V, Erickson B, Persons K, et al. An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to neurologic computed tomography and magnetic resonance images. J Digit Imaging. 2000;13:183–185. doi: 10.1007/BF03167656. [PMC free article] [PubMed] [Cross Ref]
31. Uchida K, Nakamura K, Watanabe H, et al. Clinical evaluation of irreversible data compression for computed radiography in excretory urography. J Digit Imaging. 1996;9:145–149. doi: 10.1007/BF03168610. [PubMed] [Cross Ref]
32. Wenzel A, Gotfredsen E, Borg E, et al. Impact of lossy image compression on accuracy of caries detection in digital images taken with a storage phosphor system. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, & Endodontics. 1996;81:351–355. doi: 10.1016/S1079-2104(96)80336-2. [Cross Ref]
33. Sayre J, Aberle DR, Boechat I, et al. Effect of data compression on diagnostic accuracy in digital hand and chest radiography. Proc SPIE. 1992;1653:232–240. doi: 10.1117/12.59528. [Cross Ref]
34. Mori T, Nakata H. Irreversible data compression in chest imaging using computed radiography: An evaluation. J Thorac Imaging. 1994;9:23–30. doi: 10.1097/00005382-199424000-00004. [PubMed] [Cross Ref]
35. MacMahon H, Doi K, Sanada S, et al. Data compression: Effect on diagnostic accuracy in digital chest radiography. Radiology. 1991;178:175–179. [PubMed]
36. Breeuwer M, Heusdens R, Gunnewiek RK, et al. Data compression of x-ray cardio-angiographic image series. Int J Cardiac Imaging. 1995;11:179–186. doi: 10.1007/BF01143138. [Cross Ref]
37. Onnasch DG, Prause GP, Ploger A. Objective methods for optimizing JPEG compression of coronary angiographic images. Int J Cardiac Imaging. 1995;11:151–162. doi: 10.1007/BF01143104. [Cross Ref]
38. Yamamoto LG. Using JPEG image compression to facilitate telemedicine. Am J Emerg Med 13:55-57, 1995 39. Aberle DR, Gleeson F, Sayre JW, et al: The effect of irreversible image compression on diagnostic accuracy in thoracic imaging. Invest Radiol. 1993;28:398–403. doi: 10.1097/00004424-199305000-00002. [PubMed] [Cross Ref]
40. Chan HP, Lo SC, Niklason LT, et al. Image compression in digital mammography: Effects on computerized detection of subtle microcalcifications. Med Physics. 1996;23:1325–1336. doi: 10.1118/1.597871. [Cross Ref]
41. Saiptech P, Ho BK, Panwar R, et al. Applying wavelet transforms with arithmetic coding to radiological image compression. IEEE Eng in Medicine and Biology. 1995;14:587–593. doi: 10.1109/51.464775. [Cross Ref]
42. Erickson BJ, Ryan WJ, Gehring DG, et al. Image display for clinicians on medical record workstations. J Digit Imaging. 1997;10:38–40. doi: 10.1007/BF03168653. [PMC free article] [PubMed] [Cross Ref]
43. Erickson B, Persons K, Hangiandreou N, et al. Requirements for an enterprise digital image archive. J Digit Imaging. 2001;14:72–82. doi: 10.1007/s10278-001-0005-0. [PMC free article] [PubMed] [Cross Ref]
44. Erickson B, Ryan W, Gehring D, et al. Clinician usage patterns of a desktop radiology information display application. J Digit Imaging. 1998;11:137–141. doi: 10.1007/BF03168285. [PMC free article] [PubMed] [Cross Ref]
45. Eversman W, Pavlicek W, VZavalkovskiy B, et al. Performance and, funciton of a desktop viewer at Mayo Clinic Scottsdale. J Digit Imaging. 2000;13:147–152. doi: 10.1007/BF03167648. [PMC free article] [PubMed] [Cross Ref]
46. Food and Drug Administration: Federal Register 61, 1996.

Articles from Journal of Digital Imaging are provided here courtesy of Springer