Search tips
Search criteria 


Logo of procellspringeropen.comspringeropen.comThis articleSubmit a manuscriptRegisterThis journal
Protein Cell. 2011 May; 2(5): 395–409.
Published online 2011 June 12. doi:  10.1007/s13238-011-1052-z
PMCID: PMC3893067

Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae


Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.

Keywords: pre-mRNA splicing, spliceosomal genes, Dictyostelium discoideum, comparative genomics, splicing regulators


  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [PubMed] [Cross Ref]
  • Aspegren A., Hinas A., Larsson P., Larsson A., Söderbom F. Novel non-coding RNAs in Dictyostelium discoideum and their expression during development. Nucleic Acids Res. 2004;32:4646–4656. doi: 10.1093/nar/gkh804. [PMC free article] [PubMed] [Cross Ref]
  • Bain G., Grant C.E., Tsang A. Isolation and characterization of cDNA clones encoding polypeptides related to a Dictyostelium discoideum cyclic AMP binding protein. J Gen Microbiol. 1991;137:501–508. doi: 10.1099/00221287-137-3-501. [PubMed] [Cross Ref]
  • Baldauf S.L., Roger A.J., Wenk-Siefert I., Doolittle W.F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 2000;290:972–977. doi: 10.1126/science.290.5493.972. [PubMed] [Cross Ref]
  • Barbosa-Morais N.L., Carmo-Fonseca M., Aparício S. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res. 2006;16:66–77. doi: 10.1101/gr.3936206. [PubMed] [Cross Ref]
  • Bessonov S., Anokhina M., Will C.L., Urlaub H., Lührmann R. Isolation of an active step I spliceosome and composition of its RNP core. Nature. 2008;452:846–850. doi: 10.1038/nature06842. [PubMed] [Cross Ref]
  • Black D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336. doi: 10.1146/annurev.biochem.72.121801.161720. [PubMed] [Cross Ref]
  • Blencowe B.J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000;25:106–110. doi: 10.1016/S0968-0004(00)01549-8. [PubMed] [Cross Ref]
  • Calarco J.A., Zhen M., Blencowe B.J. Networking in a global world: Establishing functional connections between neural splicing regulators and their target transcripts. RNA. 2011;17:775–791. doi: 10.1261/rna.2603911. [PubMed] [Cross Ref]
  • Cartegni L., Chew S.L., Krainer A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3:285–298. doi: 10.1038/nrg775. [PubMed] [Cross Ref]
  • Chisholm R.L., Gaudet P., Just E.M., Pilcher K.E., Fey P., Merchant S.N., Kibbe W.A. dictyBase, the model organism database for Dictyostelium discoideum. Nucleic Acids Res. 2006;34:D423–D427. doi: 10.1093/nar/gkj090. [PMC free article] [PubMed] [Cross Ref]
  • Collins L., Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol. 2005;22:1053–1066. doi: 10.1093/molbev/msi091. [PubMed] [Cross Ref]
  • Cordin O., Banroques J., Tanner N.K., Linder P. The DEAD-box protein family of RNA helicases. Gene. 2006;367:17–37. doi: 10.1016/j.gene.2005.10.019. [PubMed] [Cross Ref]
  • Crosby M.A., Goodman J.L., Strelets V.B., Zhang P., Gelbart W.M., the FlyBase Consortium FlyBase: genomes by the dozen. Nucleic Acids Res. 2007;35:D486–D491. doi: 10.1093/nar/gkl827. [PubMed] [Cross Ref]
  • Ebralidze A., Wang Y., Petkova V., Ebralidse K., Junghans R. P. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science. 2004;303:383–387. doi: 10.1126/science.1088679. [PubMed] [Cross Ref]
  • Eichinger L., Pachebat J.A., Glöckner G., Rajandream M.A., Sucgang R., Berriman M., Song J., Olsen R., Szafranski K., Xu Q., et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435:43–57. doi: 10.1038/nature03481. [PMC free article] [PubMed] [Cross Ref]
  • Escalante R., Moreno N., Sastre L. Dictyostelium discoideum developmentally regulated genes whose expression is dependent on MADS box transcription factor SrfA. Eukaryot Cell. 2003;2:1327–1335. doi: 10.1128/EC.2.6.1327-1335.2003. [PMC free article] [PubMed] [Cross Ref]
  • Fushimi K., Ray P., Kar A., Wang L., Sutherland L.C., Wu J.Y. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM 5. Proc Natl Acad Sci USA. 2008;105:15708–15713. doi: 10.1073/pnas.0805569105. [PubMed] [Cross Ref]
  • Grant C.E., Tsang A. Cloning and characterization of cDNAs encoding a novel cyclic AMP-binding protein in Dictyostelium discoideum. Gene. 1990;96:213–218. doi: 10.1016/0378-1119(90)90255-P. [PubMed] [Cross Ref]
  • Greenwood M., Tsang A. Sequence and expression of annexin VII of Dictyostelium discoideum. Biochim Biophys Acta. 1991;1088:429–432. doi: 10.1016/0167-4781(91)90137-B. [PubMed] [Cross Ref]
  • Hartmuth K., Urlaub H., Vornlocher H.-P., Will C.L., Gentzel M., Wilm M., Lührmann R. Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci U S A. 2002;99:16719–16724. doi: 10.1073/pnas.262483899. [PubMed] [Cross Ref]
  • Hinas A., Larsson P., Avesson L., Kirsebom L.A., Virtanen A., Söderbom F. Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell. 2006;5:924–934. doi: 10.1128/EC.00065-06. [PMC free article] [PubMed] [Cross Ref]
  • Hoskins A.A., Friedman L.J., Gallagher S.S., Crawford D.J., Anderson E.G., Wombacher R., Ramirez N., Cornish V.W., Gelles J., Moore M.J. Ordered and dynamic assembly of single spliceosomes. Science. 2011;331:1289–1289. doi: 10.1126/science.1198830. [PMC free article] [PubMed] [Cross Ref]
  • Kanadia R.N., Johnstone K.A., Mankodi A., Lungu C., Thornton C. A., Esson D., Timmers A.M., Hauswirth W.W., Swanson M. S. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302:1978–1980. doi: 10.1126/science.1088583. [PubMed] [Cross Ref]
  • Kar A., Fushimi K., Zhou X., Ray P., Shi C., Chen X., Liu Z., Chen S., Wu J.Y. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol Cell Biol. 2011;31:1812–1821. doi: 10.1128/MCB.01149-10. [PMC free article] [PubMed] [Cross Ref]
  • Ladd A.N., Charlet N., Cooper T.A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol. 2001;21:1285–1296. doi: 10.1128/MCB.21.4.1285-1296.2001. [PMC free article] [PubMed] [Cross Ref]
  • Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [PubMed] [Cross Ref]
  • Lejeune F., Maquat L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol. 2005;17:309–315. doi: 10.1016/ [PubMed] [Cross Ref]
  • Lin S., Fu X.D. SR proteins and related factors in alternative splicing. Adv Exp Med Biol. 2007;623:107–122. doi: 10.1007/978-0-387-77374-2_7. [PubMed] [Cross Ref]
  • Matlin A.J., Moore M.J. Spliceosome assembly and composition. Adv Exp Med Biol. 2007;623:14–35. doi: 10.1007/978-0-387-77374-2_2. [PubMed] [Cross Ref]
  • Moore M.J., Silver P.A. Global analysis of mRNA splicing. RNA. 2008;14:197–203. doi: 10.1261/rna.868008. [PubMed] [Cross Ref]
  • Mordes D., Luo X., Kar A., Kuo D., Xu L., Fushimi K., Yu G., Sternberg P., Jr, Wu J.Y. Pre-mRNA splicing and retinitis pigmentosa. Mol Vis. 2006;12:1259–1271. [PMC free article] [PubMed]
  • Nilsen T.W., Graveley B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–463. doi: 10.1038/nature08909. [PMC free article] [PubMed] [Cross Ref]
  • Pacione L.R., Szego M.J., Ikeda S., Nishina P.M., McInnes R. R. Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci. 2003;26:657–700. doi: 10.1146/annurev.neuro.26.041002.131416. [PubMed] [Cross Ref]
  • Page, R.D. (2002). Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinformatics, Chapter 6, Unit 62. [PubMed]
  • Patel A.A., Steitz J.A. Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol. 2003;4:960–970. doi: 10.1038/nrm1259. [PubMed] [Cross Ref]
  • Ramani A.K., Calarco J.A., Pan Q., Mavandadi S., Wang Y., Nelson A.C., Lee L.J., Morris Q., Blencowe B.J., Zhen M., Fraser A.G. Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res. 2011;21:342–348. doi: 10.1101/gr.114645.110. [PubMed] [Cross Ref]
  • Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. [PubMed] [Cross Ref]
  • Sanford J.R., Ellis J., Cáceres J.F. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans. 2005;33:443–446. doi: 10.1042/BST0330443. [PubMed] [Cross Ref]
  • Staley J.P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998;92:315–326. doi: 10.1016/S0092-8674(00)80925-3. [PubMed] [Cross Ref]
  • Tange T.O., Nott A., Moore M.J. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol. 2004;16:279–284. doi: 10.1016/ [PubMed] [Cross Ref]
  • Wang G.S., Cooper T.A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007;8:749–761. doi: 10.1038/nrg2164. [PubMed] [Cross Ref]
  • Will C.L., Lührmann R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem. 2005;386:713–724. doi: 10.1515/BC.2005.084. [PubMed] [Cross Ref]
  • Wu J.Y., Havlioglu N., Yuan L. Alternatively spliced genes. In: Meyers R.A., editor. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Vol 1. 2nd ed. New York: Wiley-VCH; 2004.
  • Wu J.Y., Kar A., Kuo D., Yu B., Havlioglu N. SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Mol Cell Biol. 2006;26:6739–6747. doi: 10.1128/MCB.00739-06. [PMC free article] [PubMed] [Cross Ref]
  • Zhou Z., Licklider L.J., Gygi S.P., Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002;419:182–185. doi: 10.1038/nature01031. [PubMed] [Cross Ref]

Articles from Protein & Cell are provided here courtesy of Springer