Search tips
Search criteria 


Logo of dmDisease Markers
Dis Markers. 2006; 22(4): 245–255.
Published online 2006 November 15. doi:  10.1155/2006/728296
PMCID: PMC3862287

Biomarkers that Discriminate Multiple Myeloma Patients with or without Skeletal Involvement Detected Using SELDI-TOF Mass Spectrometry and Statistical and Machine Learning Tools


Multiple Myeloma (MM) is a severely debilitating neoplastic disease of B cell origin, with the primary source of morbidity and mortality associated with unrestrained bone destruction. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) was used to screen for potential biomarkers indicative of skeletal involvement in patients with MM. Serum samples from 48 MM patients, 24 with more than three bone lesions and 24 with no evidence of bone lesions were fractionated and analyzed in duplicate using copper ion loaded immobilized metal affinity SELDI chip arrays. The spectra obtained were compiled, normalized, and mass peaks with mass-to-charge ratios (m/z) between 2000 and 20,000 Da identified. Peak information from all fractions was combined together and analyzed using univariate statistics, as well as a linear, partial least squares discriminant analysis (PLS-DA), and a non-linear, random forest (RF), classification algorithm. The PLS-DA model resulted in prediction accuracy between 96–100%, while the RF model was able to achieve a specificity and sensitivity of 87.5% each. Both models as well as multiple comparison adjusted univariate analysis identified a set of four peaks that were the most discriminating between the two groups of patients and hold promise as potential biomarkers for future diagnostic and/or therapeutic purposes.

Keywords: SELDI, surface-enhanced laser desorption/ionization, Multiple Myeloma, biomarkers

Articles from Disease Markers are provided here courtesy of Hindawi