Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1983 November; 3(11): 1985–1995.
PMCID: PMC370066

alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart.


We determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes derived from alpha-skeletal, beta- and gamma-actin cDNAs and from an alpha-cardiac actin genomic clone, we showed that 28 of the cDNAs correspond to alpha-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from alpha-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle alpha-cardiac actin cDNAs are derived from transcripts of the cloned alpha-cardiac actin gene. Direct measurements of actin isotype mRNA expression in human skeletal muscle showed that alpha-cardiac actin mRNA is expressed at 5% the level of alpha-skeletal actin. Furthermore, the alpha-cardiac actin gene expressed in skeletal muscle is the same gene which produces alpha-cardiac actin mRNA in the human heart. Of equal surprise, we found that alpha-skeletal actin mRNA accounts for about half of the total actin mRNA in adult heart. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. We conclude that alpha-skeletal and alpha-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (beta and gamma) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, we postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350–5354. [PubMed]
  • Childs G, Maxson R, Kedes LH. Histone gene expression during sea urchin embryogenesis: isolation and characterization of early and late messenger RNAs of Strongylocentrotus purpuratus by gene-specific hybridization and template activity. Dev Biol. 1979 Nov;73(1):153–173. [PubMed]
  • Cleveland DW, Lopata MA, MacDonald RJ, Cowan NJ, Rutter WJ, Kirschner MW. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. [PubMed]
  • Engel J, Gunning P, Kedes L. Human cytoplasmic actin proteins are encoded by a multigene family. Mol Cell Biol. 1982 Jun;2(6):674–684. [PMC free article] [PubMed]
  • Engel JN, Gunning PW, Kedes L. Isolation and characterization of human actin genes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4674–4678. [PubMed]
  • Gunning P, Ponte P, Okayama H, Engel J, Blau H, Kedes L. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol. 1983 May;3(5):787–795. [PMC free article] [PubMed]
  • Hall ZW, Lubit BW, Schwartz JH. Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J Cell Biol. 1981 Sep;90(3):789–792. [PMC free article] [PubMed]
  • Hamada H, Petrino MG, Kakunaga T. Molecular structure and evolutionary origin of human cardiac muscle actin gene. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5901–5905. [PubMed]
  • Holmes DS, Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. [PubMed]
  • Humphries SE, Whittall R, Minty A, Buckingham M, Williamson R. There are approximately 20 actin gene in the human genome. Nucleic Acids Res. 1981 Oct 10;9(19):4895–4908. [PMC free article] [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • McMaster GK, Carmichael GG. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. [PubMed]
  • Minty AJ, Alonso S, Caravatti M, Buckingham ME. A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell. 1982 Aug;30(1):185–192. [PubMed]
  • Minty AJ, Caravatti M, Robert B, Cohen A, Daubas P, Weydert A, Gros F, Buckingham ME. Mouse actin messenger RNAs. Construction and characterization of a recombinant plasmid molecule containing a complementary DNA transcript of mouse alpha-actin mRNA. J Biol Chem. 1981 Jan 25;256(2):1008–1014. [PubMed]
  • Okayama H, Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. [PMC free article] [PubMed]
  • Ordahl CP, Cooper TA. Strong homology in promoter and 3'-untranslated regions of chick and rat alpha-actin genes. Nature. 1983 May 26;303(5915):348–349. [PubMed]
  • Ordahl CP, Tilghman SM, Ovitt C, Fornwald J, Largen MT. Structure and developmental expression of the chick alpha-actin gene. Nucleic Acids Res. 1980 Nov 11;8(21):4989–5005. [PMC free article] [PubMed]
  • Palmiter RD. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. [PubMed]
  • Pollard TD, Weihing RR. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. [PubMed]
  • Ponte P, Gunning P, Blau H, Kedes L. Human actin genes are single copy for alpha-skeletal and alpha-cardiac actin but multicopy for beta- and gamma-cytoskeletal genes: 3' untranslated regions are isotype specific but are conserved in evolution. Mol Cell Biol. 1983 Oct;3(10):1783–1791. [PMC free article] [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Rubenstein PA, Spudich JA. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. [PubMed]
  • Schwartz RJ, Rothblum KN. Gene switching in myogenesis: differential expression of the chicken actin multigene family. Biochemistry. 1981 Jul 7;20(14):4122–4129. [PubMed]
  • Shani M, Nudel U, Zevin-Sonkin D, Zakut R, Givol D, Katcoff D, Carmon Y, Reiter J, Frischauf AM, Yaffe D. Skeletal muscle actin mRNA. Characterization of the 3' untranslated region. Nucleic Acids Res. 1981 Feb 11;9(3):579–589. [PMC free article] [PubMed]
  • Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. [PubMed]
  • Thomas PS. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. [PubMed]
  • Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783–802. [PubMed]
  • Vandekerckhove J, Weber K. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation. 1979;14(3):123–133. [PubMed]
  • Vandekerckhove J, Weber K. Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem. 1981 Jan;113(3):595–603. [PubMed]
  • Zakut R, Shani M, Givol D, Neuman S, Yaffe D, Nudel U. Nucleotide sequence of the rat skeletal muscle actin gene. Nature. 1982 Aug 26;298(5877):857–859. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)