Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1992 March; 12(3): 1149–1161.
PMCID: PMC369546

Nonsense codons in human beta-globin mRNA result in the production of mRNA degradation products.


Human beta zero-thalassemic beta-globin genes harboring either a frameshift or a nonsense mutation that results in the premature termination of beta-globin mRNA translation have been previously introduced into the germ line of mice (S.-K. Lim, J.J. Mullins, C.-M. Chen, K. Gross, and L.E. Maquat, EMBO J. 8:2613-2619, 1989). Each transgene produces properly processed albeit abnormally unstable mRNA as well as several smaller RNAs in erythroid cells. These smaller RNAs are detected only in the cytoplasm and, relative to mRNA, are longer-lived and are missing sequences from either exon I or exons I and II. In this communication, we show by using genetics and S1 nuclease transcript mapping that the premature termination of beta-globin mRNA translation is mechanistically required for the abnormal RNA metabolism. We also provide evidence that generation of the smaller RNAs is a cytoplasmic process: the 5' ends of intron 1-containing pre-mRNAs were normal, the rates of removal of introns 1 and 2 were normal, and studies inhibiting RNA synthesis with actinomycin D demonstrated a precursor-product relationship between full-length mRNA and the smaller RNAs. In vivo, about 50% of the full-length species that undergo decay are degraded to the smaller RNAs and the rest are degraded to undetectable products. Exposure of erythroid cells that expressed a normal human beta-globin transgene to either cycloheximide or puromycin did not result in the generation of the smaller RNAs. Therefore, a drug-induced reduction in cellular protein synthesis does not reproduce this aspect of cytoplasmic mRNA metabolism. These data suggest that the premature termination of beta-globin mRNA translation in either exon I or exon II results in the cytoplasmic generation of discrete mRNA degradation products that are missing sequences from exon I or exons I and II. Since these degradation products appear to be the same for all nonsense codons tested, there is no correlation between the position of translation termination and the sites of nucleolytic cleavage.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arraiano CM, Yancey SD, Kushner SR. Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol. 1988 Oct;170(10):4625–4633. [PMC free article] [PubMed]
  • Atweh GF, Brickner HE, Zhu XX, Kazazian HH, Jr, Forget BG. New amber mutation in a beta-thalassemic gene with nonmeasurable levels of mutant messenger RNA in vivo. J Clin Invest. 1988 Aug;82(2):557–561. [PMC free article] [PubMed]
  • Barker GF, Beemon K. Nonsense codons within the Rous sarcoma virus gag gene decrease the stability of unspliced viral RNA. Mol Cell Biol. 1991 May;11(5):2760–2768. [PMC free article] [PubMed]
  • Baserga SJ, Benz EJ., Jr Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2056–2060. [PubMed]
  • Baumann B, Potash MJ, Köhler G. Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J. 1985 Feb;4(2):351–359. [PubMed]
  • Belasco JG, Higgins CF. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. [PubMed]
  • Bochnig P, Reuter R, Bringmann P, Lührmann R. A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur J Biochem. 1987 Oct 15;168(2):461–467. [PubMed]
  • Brawerman G. mRNA decay: finding the right targets. Cell. 1989 Apr 7;57(1):9–10. [PubMed]
  • Brown BD, Harland RM. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes. Genes Dev. 1990 Nov;4(11):1925–1935. [PubMed]
  • Capasso O, Bleecker GC, Heintz N. Sequences controlling histone H4 mRNA abundance. EMBO J. 1987 Jun;6(6):1825–1831. [PubMed]
  • Cheng J, Fogel-Petrovic M, Maquat LE. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA. Mol Cell Biol. 1990 Oct;10(10):5215–5225. [PMC free article] [PubMed]
  • Chodosh LA, Fire A, Samuels M, Sharp PA. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem. 1989 Feb 5;264(4):2250–2257. [PubMed]
  • Costantini F, Chada K, Magram J. Correction of murine beta-thalassemia by gene transfer into the germ line. Science. 1986 Sep 12;233(4769):1192–1194. [PubMed]
  • Daar IO, Maquat LE. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Mol Cell Biol. 1988 Feb;8(2):802–813. [PMC free article] [PubMed]
  • Fan H, Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. [PubMed]
  • Gay DA, Sisodia SS, Cleveland DW. Autoregulatory control of beta-tubulin mRNA stability is linked to translation elongation. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5763–5767. [PubMed]
  • Gong ZY, Brandhorst BP. Stabilization of tubulin mRNA by inhibition of protein synthesis in sea urchin embryos. Mol Cell Biol. 1988 Aug;8(8):3518–3525. [PMC free article] [PubMed]
  • Graves RA, Pandey NB, Chodchoy N, Marzluff WF. Translation is required for regulation of histone mRNA degradation. Cell. 1987 Feb 27;48(4):615–626. [PubMed]
  • Greenberg ME, Hermanowski AL, Ziff EB. Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. Mol Cell Biol. 1986 Apr;6(4):1050–1057. [PMC free article] [PubMed]
  • Hearing P, Shenk T. Sequence-independent autoregulation of the adenovirus type 5 E1A transcription unit. Mol Cell Biol. 1985 Nov;5(11):3214–3221. [PMC free article] [PubMed]
  • Herrick D, Parker R, Jacobson A. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2269–2284. [PMC free article] [PubMed]
  • Hogan BL. he effect of inhibitors of protein synthesis on the level of ribosomal subunits in ascites cells. Biochim Biophys Acta. 1969 May 20;182(1):264–266. [PubMed]
  • Humphries RK, Ley TJ, Anagnou NP, Baur AW, Nienhuis AW. Beta O-39 thalassemia gene: a premature termination codon causes beta-mRNA deficiency without affecting cytoplasmic beta-mRNA stability. Blood. 1984 Jul;64(1):23–32. [PubMed]
  • Kinniburgh AJ, Maquat LE, Schedl T, Rachmilewitz E, Ross J. mRNA-deficient beta o-thalassemia results from a single nucleotide deletion. Nucleic Acids Res. 1982 Sep 25;10(18):5421–5427. [PMC free article] [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Levine BJ, Chodchoy N, Marzluff WF, Skoultchi AI. Coupling of replication type histone mRNA levels to DNA synthesis requires the stem-loop sequence at the 3' end of the mRNA. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6189–6193. [PubMed]
  • Lim S, Mullins JJ, Chen CM, Gross KW, Maquat LE. Novel metabolism of several beta zero-thalassemic beta-globin mRNAs in the erythroid tissues of transgenic mice. EMBO J. 1989 Sep;8(9):2613–2619. [PubMed]
  • Losson R, Lacroute F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5134–5137. [PubMed]
  • Maquat LE, Kinniburgh AJ. A beta zero-thalassemic beta-globin RNA that is labile in bone marrow cells is relatively stable in HeLa cells. Nucleic Acids Res. 1985 Apr 25;13(8):2855–2867. [PMC free article] [PubMed]
  • Maquat LE, Kinniburgh AJ, Rachmilewitz EA, Ross J. Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell. 1981 Dec;27(3 Pt 2):543–553. [PubMed]
  • MORRIS AJ, SCHWEET RS. Release of soluble protein from reticulocyte ribosomes. Biochim Biophys Acta. 1961 Feb 18;47:415–416. [PubMed]
  • Moschonas N, de Boer E, Grosveld FG, Dahl HH, Wright S, Shewmaker CK, Flavell RA. Structure and expression of a cloned beta o thalassaemic globin gene. Nucleic Acids Res. 1981 Sep 11;9(17):4391–4401. [PMC free article] [PubMed]
  • Orkin SH, Goff SC. Nonsense and frameshift mutations in beta 0-thalassemia detected in cloned beta-globin genes. J Biol Chem. 1981 Oct 10;256(19):9782–9784. [PubMed]
  • Pachter JS, Yen TJ, Cleveland DW. Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell. 1987 Oct 23;51(2):283–292. [PubMed]
  • Parker R, Jacobson A. Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MAT alpha 1 gene are involved in promoting rapid mRNA decay in yeast. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2780–2784. [PubMed]
  • Peltz SW, Brewer G, Bernstein P, Hart PA, Ross J. Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukaryot Gene Expr. 1991;1(2):99–126. [PubMed]
  • Pestka S. The use of inhibitors in studies on protein synthesis. Methods Enzymol. 1974;30:261–282. [PubMed]
  • Ross J. Messenger RNA turnover in eukaryotic cells. Mol Biol Med. 1988 Feb;5(1):1–14. [PubMed]
  • Ross J, Kobs G. H4 histone messenger RNA decay in cell-free extracts initiates at or near the 3' terminus and proceeds 3' to 5'. J Mol Biol. 1986 Apr 20;188(4):579–593. [PubMed]
  • Ross J, Peltz SW, Kobs G, Brewer G. Histone mRNA degradation in vivo: the first detectable step occurs at or near the 3' terminus. Mol Cell Biol. 1986 Dec;6(12):4362–4371. [PMC free article] [PubMed]
  • Shyu AB, Belasco JG, Greenberg ME. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. [PubMed]
  • Shyu AB, Greenberg ME, Belasco JG. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 1989 Jan;3(1):60–72. [PubMed]
  • Stanners CP. The effect of cycloheximide on polyribosomes from hamster cells. Biochem Biophys Res Commun. 1966 Sep 8;24(5):758–764. [PubMed]
  • Stoeckle MY, Hanafusa H. Processing of 9E3 mRNA and regulation of its stability in normal and Rous sarcoma virus-transformed cells. Mol Cell Biol. 1989 Nov;9(11):4738–4745. [PMC free article] [PubMed]
  • Takeshita K, Forget BG, Scarpa A, Benz EJ., Jr Intranuclear defect in beta-globin mRNA accumulation due to a premature translation termination codon. Blood. 1984 Jul;64(1):13–22. [PubMed]
  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J. 1985 Jul;4(7):1715–1723. [PubMed]
  • Trudel M, Magram J, Bruckner L, Costantini F. Upstream G gamma-globin and downstream beta-globin sequences required for stage-specific expression in transgenic mice. Mol Cell Biol. 1987 Nov;7(11):4024–4029. [PMC free article] [PubMed]
  • Urlaub G, Mitchell PJ, Ciudad CJ, Chasin LA. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol. 1989 Jul;9(7):2868–2880. [PMC free article] [PubMed]
  • Wisdom R, Lee W. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 1991 Feb;5(2):232–243. [PubMed]
  • Yen TJ, Gay DA, Pachter JS, Cleveland DW. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol Cell Biol. 1988 Mar;8(3):1224–1235. [PMC free article] [PubMed]
  • Yen TJ, Machlin PS, Cleveland DW. Autoregulated instability of beta-tubulin mRNAs by recognition of the nascent amino terminus of beta-tubulin. Nature. 1988 Aug 18;334(6183):580–585. [PubMed]
  • Zandomeni R, Mittleman B, Bunick D, Ackerman S, Weinmann R. Mechanism of action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc Natl Acad Sci U S A. 1982 May;79(10):3167–3170. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)