PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. Mar 1991; 11(3): 1631–1637.
PMCID: PMC369459
Replication-competent human mitochondrial DNA lacking the heavy-strand promoter region.
C T Moraes, F Andreetta, E Bonilla, S Shanske, S DiMauro, and E A Schon
Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
Abstract
We identified two patients with progressive external ophthalmoplegia, a mitochondrial disease, who harbored a population of partially deleted mitochondrial DNA (mtDNA) with unusual properties. These molecules were deleted from mtDNA positions 548 to 4,442 and encompassed not only rRNA sequences but the heavy-strand promoter region as well. A 13-bp direct repeat was found flanking the breakpoint precisely, with the repeat at positions 535 to 547 located within the binding site for mitochondrial transcription factor 1 (mtTF1). This is the second mtDNA deletion involving a 13-bp direct repeat reported but is at least 10 times less frequent in the patient population than the former one. In situ hybridization studies showed that transcripts under the control of the light-strand promoter were abundant in muscle fibers with abnormal proliferation of mitochondria, while transcripts directed by the heavy-strand promoter, whether of genes residing inside or outside the deleted region, were not. The efficient transcription from the light-strand promoter implies that the major heavy-and light-strand promoters, although physically close, are functionally independent, confirming previous in vitro studies.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page.
Images in this article
Click on the image to see a larger version.
Articles from Molecular and Cellular Biology are provided here courtesy of
American Society for Microbiology (ASM)