Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1987 October; 7(10): 3792–3798.
PMCID: PMC368036

Domains of beta-tubulin essential for conserved functions in vivo.


The relationship between the primary sequence of tubulins and their properties in cells was studied by gene transfection experiments. Previously, we studied a chimeric beta-tubulin formed from chicken beta-tubulin-2 sequences in the amino-terminal portion and the highly divergent Saccharomyces cerevisiae TUB2 sequences in the carboxy-terminal 25% of the molecule. In the cytoplasm of cultured animal cells, this protein incorporates into all microtubule structures and assembles with the same efficiency as endogenous tubulin. We show that the protein products of chimeric genes with an increasing proportion of yeast sequence, extending 5' of the carboxy-terminal 25%, are abnormal in two ways. First, they assemble with a significantly lower efficiency than the original chimeric protein or the endogenous tubulins. Second, they are less stable in the cytoplasm. The results suggest that the position of the yeast sequences is crucial in determining the properties of the molecule. Results of analyses of 1 deletion mutation and 10 linker insertions in the original chimeric tubulin suggest that those changes made outside the carboxyl terminus completely disrupt assembly activity, while those made in the carboxyl terminus do not.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page.

Images in this article

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)