Recent years have eyewitnessed a blossom flourishing in the evolvement of electronics, communications, and auto-computing industries, and this bearing is irrefutably continuing in this century. The cooling of electrical, mechanical, and electronic components has become troublesome in today's fast-growing technologies. Inasmuch as the significance of heat exchangers in tremendous engineering applications, the subject of potential heat transfer enhancement in these devices has received sizeable attention in practice and research. On account of the fact that the consistency of the electronic components commodiously increases, conspicuous lack of heat transfer enhancement both in macro- and microscales of channels is realized. Encountering a fluid flow by utilizing transverse surfaces in a channel is a prevalent method that is used to intensify the rate of heat transfer from heated surfaces.

Alamyane and Mohamad
[

1] studied the forced convection heat transfer in a channel with extended surfaces. The effects of the Reynolds number (Re) and the fin height and spacing on the fluid flow and the heat transfer were examined. Yang et al.
[

2] simulated the forced convection in a parallel plate channel. Constant temperature was considered in both upper and lower walls, and a transverse object was located at the lower channel wall. The effects of the Reynolds number, the thermal conductivity ratio of the fluid, and the fin profile area on the fluid flow and the heat transfer rate were analyzed. The study results showed that the heat transfer enhancement with an increment of the Reynolds number and the thermal conductivity ratio of the fluid at various fin profiles. Yang et al.
[

3] numerically investigated the effect of mix convection heat transfer in an inclined parallel plate channel with a transverse object at the bottom wall. In this research, the effects of thermal conductivity, Reynolds number, the fin profile, and the channel inclination on the heat transfer rate at various Richardson numbers were examined. They discovered that the ace aspect ratio of the fin was related to the fin with utmost heat transfer at various Reynolds and Richardson numbers.

Young and Vafai
[

4] observed the impact of controlling parameters on the cooling of heated channels with mounted objects. Concentrating on the effect of altering the dimensions of the object, the thermal conductivity, the heating method, and the Re was embraced. They deduced that the fluid flow and heat transfer are affected by the geometry and material of the object, and a correlation for the average Nusselt number was proposed as a function of the controlling parameters.

Meinders and Hanjalic
[

5] experimentally investigated the effect of the cubes' arrangement on the turbulent fluid flow. They comprehended that the flow stream was affected by the distance between the objects owing to the fact of augmenting the flow velocity. Moreover, amelioration in velocity distribution and heat transfer than the staggered distribution case was found for flow over inline cubes. Yan et al.
[

6] experimentally investigated the influence of short surface-mounted objects at the top of a flat plate on the heat transfer enhancement. Scrutinizing was done on the effect of varies cross sections, spacing and numbers of objects, and the Reynolds number. They perceived that the heat transfer was incremented when the height of the object is comparatively equal to half of the channel height.

In an experimental investigation by Yuan et al.
[

7], the heat transfer and friction characteristics of a channel which were attached by winglets were examined. Heat transfer from the channel was achieved to be noticeably augmented by using winglets in comparison with conventional channels with rectangular transverse objects. For a high Reynolds number, the heat transfer was enhanced by a factor of 2.7 to 6 times of the smooth channel.

Utilizing nanofluids for the purpose of enhancing the heat transfer in thermal systems is another alternative technique
[

8]. The thermal performance of different types of nanofluids has been the subject of many recent studies on forced, natural, and mixed convection problems. Several explorations have studied natural convection of nanofluids in cavities
[

9,

10]. They argued that the addition of nanoparticles in the fluid indisputably increase the natural convection heat transfer.

Chein and Huang
[

11] analyzed the cooling of two silicon microchannel heat sinks with a water-Cu nanofluid. The heat transfer and fraction coefficients were based on the theoretical models and the experimental correlations. They realized that the heat transfer performance of microchannels was greatly improved when nanofluids were added into base fluid as coolants without any extra pressure drop.

Recently, Santra et al.
[

12] numerically investigated the effect of water-Cu nanofluid through parallel plate channel in laminar forced convection. A cold nanofluid was sent through the channel, and the walls of the channel were isothermally heated. The effects of the Reynolds number and the solid volume fraction on the heat transfer were studied by considering the fluid to be Newtonian and non-Newtonian. They observed that the rate of heat transfer increased with an increase of the Reynolds number and the solid volume fraction. The increase in the heat transfer was approximately the same for both scenarios.

The lattice Boltzmann method (LBM) is another numerical method that is often used to simulate flow problems. LBM have been used for more than 2 decades as an alternative numerical technique. In LBM, it is intended to model fluids as a collection of particles, which successively undergo collision and propagation over a discrete lattice mesh. Several lattice Boltzmann models have been proposed for the incompressible Navier–Stokes equations. A collision model was proposed by Bhatnagar et al.
[

13] to simplify the analysis of the lattice Boltzmann equation, which leads to the so-called lattice BGK model. Remarkable efforts have been conducted by many researchers that made this numerical method more attractive for fluid dynamics modeling, e.g.,
[

14,

15]. For more details about LBM and its application, kindly refer to the aforementioned publications.

Most of the researches cited above considered the heat transfer enhancement by adding either the fin or using nanofluids. The main objective of this study is to examine both of these effects on the heat transfer performance. In general, previous works were performed to investigate different cases of nanofluid flow and heat transfer in channels with mounted objects by focusing on changing geometries, arrangement, and dimensions of the objects. However, more efforts are needed in order to optimize the controlling parameters for best heat transfer enhancement.