1. Taylor
JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements: Univ Science Books.

2. Bevington P, Robinson DK (2002) Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill.

3. Hughes I, Hase T (2010) Measurements and their uncertainties: a practical guide to modern error analysis: Oxford University Press.

4. Pearson
K (1920) Notes on the history of correlation. Biometrika 13: 25–45.

5. Sackett
DL (1979) Bias in analytic research. Journal of chronic diseases 32: 51–63. [PubMed] 6. Ransohoff
DF (2005) Bias as a threat to the validity of cancer molecular-marker research. Nature Reviews Cancer 5: 142–149. [PubMed] 7. Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2: 171–196.

8. Marcellin E, Nielsen LK, Abeydeera P, Krömer JO (2009) Quantitative analysis of intracellular sugar phosphates and sugar nucleotides in encapsulated streptococci using HPAEC-PAD. Biotechnology journal 4: 58–63. [PubMed] 9. Korman A, Oh A, Raskind A, Banks D (2012) Statistical methods in metabolomics, Methods in Molecular Biology (Clifton. NJ) 856: 381–413. [PubMed] 10. Du P, Stolovitzky G, Horvatovich P, Bischoff R, Lim J (2008) A noise model for mass spectrometry based proteomics. Bioinformatics 24: 1070–1077. [PubMed] 11. Laatikainen R, Niemitz M, Malaisse WJ, Biesemans M, Willem R (2005) A computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints: Analysis of overlapping 13C-2H multiplets of 13C enriched metabolites from cell suspensions incubated in deuterated media. Magnetic resonance in medicine 36: 359–365. [PubMed] 12. Nickerson
RS (1998) Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology; Review of General Psychology 2: 175.

13. Hinkelmann K, Kempthorne O (2007) Design and Analysis of Experiments, Introduction to Experimental Design: Wiley-Interscience.

14. Tamhane
AC (1977) Multiple comparisons in model I one-way ANOVA with unequal variances. Communications in Statistics-Theory and Methods 6: 15–32.

15. Welch
BL (1947) The generalization of student's’ problem when several different population variances are involved. Biometrika: 28–35. [PubMed] 16. Gross
J (2003) Nortest: tests for normality. R package version 1.0. University of Dortmund, Dortmund, Germany.

17. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.

18. Stephens
MA (1974) EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association: 730–737.

19. Jüni P, Altman DG, Egger M (2001) Assessing the quality of controlled clinical trials. Bmj 323: 42–46. [PMC free article] [PubMed] 20. Kaptchuk
TJ (2001) The double-blind, randomized, placebo-controlled trial: gold standard or golden calf?. Journal of Clinical Epidemiology 54: 541–549. [PubMed] 21. Hansson L, Hedner T, Dahlöf BÖR (1992) Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Blood Pressure 1: 113–119. [PubMed] 22. Allen JR, Earp R, Farrell EC, Gruemer H (1969) Analytical bias in a quality control scheme. Clinical Chemistry 15: 1039–1044. [PubMed] 23. Link H, Anselment B, Weuster-Botz D (2008) Leakage of adenylates during cold methanol/glycerol quenching of *Escherichia coli*. Metabolomics 4: 240–247.

24. Haug K, Salek RM, Conesa P, Hastings J, de Matos P (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research 41: D781–D786. [PMC free article] [PubMed] 25. Fiehn O, Sumner LW, Rhee SY, Ward J, Dickerson J (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3: 195–201.

26. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3: 211–221. [PMC free article] [PubMed] 27. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3: 231–241.

28. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clinical Chemistry 49: 7–18. [PubMed] 29. Altman DG, Schulz KF, Moher D, Egger M, Davidoff F (2001) The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Annals of internal medicine 134: 663–694. [PubMed] 30. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC medicine 8: 18. [PMC free article] [PubMed] 31. Karakach TK, Wentzell PD, Walter JA (2009) Characterization of the measurement error structure in 1D 1H NMR data for metabolomics studies. Analytica Chimica Acta 636: 163–174. [PubMed] 32. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS: Springer Verlag.

33. Pinheiro J, Bates D, DebRoy S (2007) Linear and nonlinear mixed effects models. R package version 3: 57.

34. Cohen
J (1988) Statistical power analysis for the behavioral sciences: Lawrence Erlbaum.

35. Lavagnini I, Magno F (2006) A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry technique. Mass spectrometry reviews 26: 1–18. [PubMed] 36. Razali NM, Wah YB (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics 2: 21–33.

37. Fay MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics surveys 4: 1. [PMC free article] [PubMed] 38. Ruxton
GD (2006) The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology 17: 688–690.

39. Siegel
S (1957) Nonparametric statistics. The American Statistician 11: 13–19.

40. McElduff F, Cortina-Borja M, Chan SK, Wade A (2010) When t-tests or Wilcoxon-Mann-Whitney tests won't do. Advances in Physiology Education 34: 128–133. [PubMed] 41. Van Belle
G (2011) Statistical rules of thumb: Wiley-Interscience.

42. Lee HN, Marshall AG (2000) Theoretical maximal precision for mass-to-charge ratio, amplitude, and width measurements in ion-counting mass analyzers. Analytical chemistry 72: 2256–2260. [PubMed] 43. Manly
BFJ (2006) Randomization, bootstrap and Monte Carlo methods in biology: Chapman & Hall/CRC.

44. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science 1: 54–75.

45. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution 24: 127–135. [PubMed] 46. Zhao Z, Kuijvenhoven K, Ras C, van Gulik WM, Heijnen JJ (2008) Isotopic non-stationary 13C gluconate tracer method for accurate determination of the pentose phosphate pathway split-ratio in *Penicillium chrysogenum*. Metabolic Engineering 10: 178. [PubMed] 47. Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology 4: 32. [PubMed] 48. Karakach TK, Knight R, Lenz EM, Viant MR, Walter JA (2009) Analysis of time course 1H NMR metabolomics data by multivariate curve resolution. Magnetic Resonance in Chemistry 47: S105–S117. [PubMed] 49. Pavese F, Ber M, Forbes AB (2009) Advanced Mathematical and Computational Tools in Metrology and Testing Viii: World Scientific Publishing Company Incorporated.

50. Clifford
AA (1973) Multivariate error analysis: A handbook of error propagation and calculation in many-parameter systems: Applied Science Publishers.

51. Hamilton
WC (1964) Statistics in physical science. Estimation, hypothesis testing, and least squares
New York: Ronald Press, 1.

52. Tellinghuisen
J (2001) Statistical error propagation. The Journal of Physical Chemistry A 105: 3917–3921.

53. Draper NR, Smith H, Pownell E (1966) Applied regression analysis: Wiley New York.

54. Metropolis N, Ulam S (1949) The monte carlo method. Journal of the American Statistical Association 44: 335–341. [PubMed] 55. Liu
JS (2008) Monte Carlo strategies in scientific computing: Springer.

56. Cox MG, Siebert BRL (2006) The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia 43: S178.

57. (2012) MATLAB Documentation. Natick, MA: The MathWorks Inc.

58. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. Journal of computational and graphical statistics: 299–314.

59. Knuth
DE (2007) Seminumerical algorithms.

60. Knuth
DE (2006) The art of computer programming: addison-Wesley.

61. Bindel D, Goodman J (2009) Principles of Scientific Computing.

62. Cox M, Harris P (2008) Software specifications for uncertainty evaluation: National Physical Laboratory.

63. Wichmann B, Hill I (2006) Generating good pseudo-random numbers. Computational Statistics & Data Analysis 51: 1614–1622.

64. Massey
FJ
Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46: 68–78.

65. Young
IT (1977) Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. Journal of Histochemistry & Cytochemistry 25: 935–941. [PubMed] 66. Vale CD, Maurelli VA (1983) Simulating multivariate nonnormal distributions. Psychometrika 48: 465–471.

67. Headrick TC, Sawilowsky SS (1999) Simulating correlated multivariate nonnormal distributions: Extending the Fleishman power method. Psychometrika 64: 25–35.

68. Iman RL, Conover W (1982) A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics-Simulation and Computation 11: 311–334.

69. Wiechert W, Siefke C, deGraaf AA, Marx A (1997) Bidirectional reaction steps in metabolic networks .2. Flux estimation and statistical analysis. Biotechnology and Bioengineering 55: 118–135. [PubMed] 70. Buckland
ST (1984) Monte Carlo confidence intervals. Biometrics: 811–817.

71. Spearman
C (1904) The proof and measurement of association between two things. The American journal of psychology 15: 72–101.

72. Engl HW, Flamm C, Kügler P, Lu J, Müller S (2009) Inverse problems in systems biology. Inverse Problems 25: 123014.

73. Tarantola
A (2005) Inverse problem theory and methods for model parameter estimation: Society for Industrial Mathematics.

74. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics 7: 140. [PubMed] 75. Wahl S, Nöh K, Wiechert W (2008) 13C labeling experiments at metabolic nonstationary conditions: An exploratory study. Bmc Bioinformatics 9: 152. [PMC free article] [PubMed] 76. Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Current opinion in biotechnology 21: 63. [PubMed] 77. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34: D689–D691. [PMC free article] [PubMed] 78. Li C, Courtot M, Le Novère N, Laibe C (2009) BioModels. net Web Services, a free and integrated toolkit for computational modelling software. Briefings in Bioinformatics 11: 270–277. [PMC free article] [PubMed] 79. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems: Springer.

80. Groetsch
CW (1984) The theory of Tikhonov regularization for Fredholm equations of the first kind: Pitman Boston.

81. Natterer
F (1984) Error bounds for Tikhonov regularization in Hilbert scales. Applicable Analysis 18: 29–37.

82. Bates DM, Watts DG (2008) Nonlinear regression: iterative estimation and linear approximations: Wiley Online Library.

83. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metabolic Engineering 8: 324–337. [PubMed] 84. Radrich K, Tsuruoka Y, Dobson P, Gevorgyan A, Swainston N (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Systems Biology 4: 114. [PMC free article] [PubMed] 85. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of theoretical biology 203: 229. [PubMed] 86. Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnology and bioengineering 55: 101–117. [PubMed] 87. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S (2007) Metabolic flux elucidation for large-scale models using^{13} C labeled isotopes. Metabolic Engineering 9: 387–405. [PMC free article] [PubMed] 88. Goudar CT, Biener R, Konstantinov KB, Piret JM (2009) Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnology progress 25: 986–998. [PubMed] 89. Fan TW-M, Lane AN, Higashi RM (2004) The Promise of Metabolomics in Cancer Molecular Therapeutics. Current Opnion in Molecular Therapeutics 6: 584–592. [PubMed] 90. Lane AN, Fan TW, Higashi RM (2008) Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods Cell Biol 84: 541–588. [PubMed] 91. Fan TWM, Lorkiewicz P, Sellers K, Moseley HNB, Higashi RM (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacology & Therapeutics 133: 366. [PMC free article] [PubMed] 92. Szyperski
T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. QUARTERLY REVIEWS OF BIOPHYSICS 31: 41–106. [PubMed] 93. Schellenberger J, Zielinski DC, Choi W, Madireddi S, Portnoy V (2012) Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling. BMC Systems Biology 6: 9. [PMC free article] [PubMed] 94. Nöh K, Wiechert W (2006) Experimental design principles for isotopically instationary 13C labeling experiments. Biotechnology and Bioengineering : 234 94: 251. [PubMed] 95. Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Systems Biology 6: 43. [PMC free article] [PubMed] 96. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Journal of Biotechnology 144: 167–174. [PMC free article] [PubMed] 97. Wang NS, Stephanopoulos G (1983) Application of macroscopic balances to the identification of gross measurement errors. Biotechnology and bioengineering 25: 2177–2208. [PubMed] 98. Van der Heijden R, Romein B, Heijnen J, Hellinga C, Luyben K (1994) Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors. Biotechnology and bioengineering 43: 11–20. [PubMed] 99. Palsson
B (2000) The challenges of in silico biology. Nature Biotechnology 18: 1147–1150. [PubMed] 100. Akaike
H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

101. Moseley HNB, Lane A, Belshoff A, Higashi R, Fan T (2011) A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions. BMC Biology 9: 37. [PMC free article] [PubMed] 102. Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G (2010) Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Analytical chemistry 82: 6621–6628. [PubMed]