PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1992 July; 12(7): 3224–3234.
PMCID: PMC364537

Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins.

Abstract

Eleven suppressors of the radiation sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase were analyzed and found to contain codominant mutations in the RAD51 gene known to be involved in recombinational repair and in genetic recombination. These mutant alleles confer an almost complete block in recombinational repair, as does deletion of RAD51, but heterozygous mutant alleles suppress the defects of srs2::LEU2 cells and are semidominant in Srs2+ cells. The results of this study are interpreted to mean that wild-type Rad51 protein binds to single-stranded DNA and that the semidominant mutations do not prevent this binding. The cloning and sequencing of RAD51 indicated that the gene encodes a predicted 400-amino-acid protein with a molecular mass of 43 kDa. Sequence comparisons revealed homologies to domains of Escherichia coli RecA protein predicted to be involved in DNA binding, ATP binding, and ATP hydrolysis. The expression of RAD51, measured with a RAD51-lacZ gene fusion, was found to be UV- and gamma-ray-inducible, with dose-dependent responses.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aboussekhra A, Chanet R, Zgaga Z, Cassier-Chauvat C, Heude M, Fabre F. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 1989 Sep 25;17(18):7211–7219. [PMC free article] [PubMed]
  • Aguilera A, Klein HL. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics. 1988 Aug;119(4):779–790. [PubMed]
  • Andrews BJ, Herskowitz I. Regulation of cell cycle-dependent gene expression in yeast. J Biol Chem. 1990 Aug 25;265(24):14057–14060. [PubMed]
  • Brutlag DL, Dautricourt JP, Maulik S, Relph J. Improved sensitivity of biological sequence database searches. Comput Appl Biosci. 1990 Jul;6(3):237–245. [PubMed]
  • Cassier-Chauvat C, Fabre F. A similar defect in UV-induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces cerevisiae. Mutat Res. 1991 May;254(3):247–253. [PubMed]
  • Clark AB, Dykstra CC, Sugino A. Isolation, DNA sequence, and regulation of a Saccharomyces cerevisiae gene that encodes DNA strand transfer protein alpha. Mol Cell Biol. 1991 May;11(5):2576–2582. [PMC free article] [PubMed]
  • Daignan-Fornier B, Bolotin-Fukuhara M. In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivative adapted to yeast. Gene. 1988;62(1):45–54. [PubMed]
  • Dykstra CC, Hamatake RK, Sugino A. DNA strand transfer protein beta from yeast mitotic cells differs from strand transfer protein alpha from meiotic cells. J Biol Chem. 1990 Jul 5;265(19):10968–10973. [PubMed]
  • Dykstra CC, Kitada K, Clark AB, Hamatake RK, Sugino A. Cloning and characterization of DST2, the gene for DNA strand transfer protein beta from Saccharomyces cerevisiae. Mol Cell Biol. 1991 May;11(5):2583–2592. [PMC free article] [PubMed]
  • Fabre F. A UV-supersensitive mutant in the yeast Schizosaccharomyces pombe. Mol Gen Genet. 1971;110(2):134–143. [PubMed]
  • Game JC, Cox BS. Synergistic interactions between rad mutations in yeast. Mutat Res. 1973 Oct;20(1):35–44. [PubMed]
  • Game JC, Mortimer RK. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. [PubMed]
  • Hamatake RK, Dykstra CC, Sugino A. Presynapsis and synapsis of DNA promoted by the STP alpha and single-stranded DNA-binding proteins from Saccharomyces cerevisiae. J Biol Chem. 1989 Aug 5;264(22):13336–13342. [PubMed]
  • Hastings PJ, Quah SK, von Borstel RC. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature. 1976 Dec 23;264(5588):719–722. [PubMed]
  • Heyer WD, Evans DH, Kolodner RD. Renaturation of DNA by a Saccharomyces cerevisiae protein that catalyzes homologous pairing and strand exchange. J Biol Chem. 1988 Oct 15;263(29):15189–15195. [PubMed]
  • Higgins CF, Hiles ID, Whalley K, Jamieson DJ. Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J. 1985 Apr;4(4):1033–1039. [PubMed]
  • Horii T, Ogawa T, Ogawa H. Organization of the recA gene of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):313–317. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Johnson AW, Kolodner RD. Strand exchange protein 1 from Saccharomyces cerevisiae. A novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J Biol Chem. 1991 Jul 25;266(21):14046–14054. [PubMed]
  • Johnston M, Davis RW. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Aug;4(8):1440–1448. [PMC free article] [PubMed]
  • Kans JA, Mortimer RK. Nucleotide sequence of the RAD57 gene of Saccharomyces cerevisiae. Gene. 1991 Aug 30;105(1):139–140. [PubMed]
  • Kowalczykowski SC, Krupp RA. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II. Co-dominant effects of RecA142 protein on wild-type RecA protein function. J Mol Biol. 1989 Jun 20;207(4):735–747. [PubMed]
  • Lawrence CW. Mutagenesis in Saccharomyces cerevisiae. Adv Genet. 1982;21:173–254. [PubMed]
  • Lawrence CW, Christensen RB. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol. 1979 Sep;139(3):866–876. [PMC free article] [PubMed]
  • Lin HC, Lei SP, Wilcox G. An improved DNA sequencing strategy. Anal Biochem. 1985 May 15;147(1):114–119. [PubMed]
  • Malone RE, Esposito RE. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. [PubMed]
  • Morrison A, Christensen RB, Alley J, Beck AK, Bernstine EG, Lemontt JF, Lawrence CW. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol. 1989 Oct;171(10):5659–5667. [PMC free article] [PubMed]
  • Morrison DP, Hastings PJ. Characterization of the mutator mutation mut5-1. Mol Gen Genet. 1979 Aug;175(1):57–65. [PubMed]
  • Nakai S, Matsumoto S. Two types of radiation-sensitive mutant in yeast. Mutat Res. 1967 Mar-Apr;4(2):129–136. [PubMed]
  • Ogawa T, Wabiko H, Tsurimoto T, Horii T, Masukata H, Ogawa H. Characteristics of purified recA protein and the regulation of its synthesis in vivo. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):909–915. [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PubMed]
  • Roca AI, Cox MM. The RecA protein: structure and function. Crit Rev Biochem Mol Biol. 1990;25(6):415–456. [PubMed]
  • Rong L, Palladino F, Aguilera A, Klein HL. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics. 1991 Jan;127(1):75–85. [PubMed]
  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Saeki T, Machida I, Nakai S. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat Res. 1980 Dec;73(2):251–265. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Schiestl RH, Prakash S, Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics. 1990 Apr;124(4):817–831. [PubMed]
  • Simon JA, Lis JT. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. [PMC free article] [PubMed]
  • Story RM, Steitz TA. Structure of the recA protein-ADP complex. Nature. 1992 Jan 23;355(6358):374–376. [PubMed]
  • Story RM, Weber IT, Steitz TA. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. [PubMed]
  • Tishkoff DX, Johnson AW, Kolodner RD. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1. Mol Cell Biol. 1991 May;11(5):2593–2608. [PMC free article] [PubMed]
  • Tschumper G, Carbon J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene. 1980 Jul;10(2):157–166. [PubMed]
  • Walker GC. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. [PMC free article] [PubMed]
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. [PubMed]
  • Zaret KS, Sherman F. DNA sequence required for efficient transcription termination in yeast. Cell. 1982 Mar;28(3):563–573. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)