PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. Jun 1992; 12(6): 2561–2569.
PMCID: PMC364449
Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming.
L L Stohl and D A Clayton
Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427.
Abstract
Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.6M), or click on a page image below to browse page by page.
Images in this article
Articles from Molecular and Cellular Biology are provided here courtesy of
American Society for Microbiology (ASM)