Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Feb 1992; 12(2): 836–846.
PMCID: PMC364317
Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13.
T L Yi, J L Cleveland, and J N Ihle
Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.
Protein tyrosine phosphorylation has been implicated in the growth and functional responses of hematopoietic cells. Recently, approaches have been developed to characterize the protein tyrosine phosphatases that may contribute to regulation of protein tyrosine phosphorylation. One novel protein tyrosine phosphatase was expressed predominantly in hematopoietic cells. Hematopoietic cell phosphatase encodes a 68-kDa protein that contains a single phosphatase conserved domain. Unlike other known protein tyrosine phosphatases, hematopoietic cell phosphatase contains two src homology 2 domains. We also cloned the human homolog, which has 95% amino acid sequence identity. Both the murine and human gene products have tyrosine-specific phosphatase activity, and both are expressed predominantly in hematopoietic cells. Importantly, the human gene maps to chromosome 12 region p12-p13. This region is associated with rearrangements in approximately 10% of cases of acute lymphocytic leukemia in children.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.6M), or click on a page image below to browse page by page.
Images in this article
Articles from Molecular and Cellular Biology are provided here courtesy of
American Society for Microbiology (ASM)