Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1988 May; 8(5): 2195–2203.
PMCID: PMC363401

Isolation, characterization, and UV-stimulated expression of two families of genes encoding polypeptides of related structure in human epidermal keratinocytes.


By screening of a cDNA library made on mRNA isolated from UV-irradiated human epidermal keratinocytes for sequences whose relative concentration increases in the cytoplasm after irradiation, we have isolated 40 cDNA clones (T. Kartasova, B. J. C. Cornelissen, P. Belt, and P. van de Putte, Nucleic Acids Res. 15:5945-5962, 1987). Here we describe two distinct groups of cDNA clones which do not cross-hybridize to each other but nevertheless encode proteins of very similar primary structure. These polypeptides are small (8 to 10 kilodaltons) and exceptionally rich in proline, cysteine, and glutamine and have similar repeating elements not found elsewhere. The new proteins were designated sprI and sprII (small, proline rich). The presence of prolines and cysteines suggests that they may be either structural proteins with a strong secondary structure or metal-binding proteins such as metallothioneins. Southern blot and sequence analyses of the cDNAs indicate that at least the sprII group of clones represents a family of related genes. The nucleotide sequence of both groups seems to be conserved upon evolution. The level of mRNAs corresponding to the two groups of cDNAs is increased in the cytoplasm of human epidermal keratinocytes after both UV irradiation and treatment with 4-nitroquinoline 1-oxide or 12-O-tetradecanoylphorbol 13-acetate.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Angel P, Pöting A, Mallick U, Rahmsdorf HJ, Schorpp M, Herrlich P. Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts. Mol Cell Biol. 1986 May;6(5):1760–1766. [PMC free article] [PubMed]
  • Berg JM. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. [PubMed]
  • Berget SM. Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature. 1984 May 10;309(5964):179–182. [PubMed]
  • Bishop JO, Rosbash M. Polynucleotide sequences in eukaryotic DNA and RNA that form ribonuclease-resistant complexes with polyuridylic acid. J Mol Biol. 1974 May 5;85(1):75–86. [PubMed]
  • Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. [PubMed]
  • Ikenaga M, Ichikawa-Ryo H, Kondo S. The major cause of inactivation and mutation by 4-nitroquinoline 1-oixde in Escherichia coli: excisable 4NQO-purine adducts. J Mol Biol. 1975 Feb 25;92(2):341–356. [PubMed]
  • Kartasova T, Cornelissen BJ, Belt P, van de Putte P. Effects of UV, 4-NQO and TPA on gene expression in cultured human epidermal keratinocytes. Nucleic Acids Res. 1987 Aug 11;15(15):5945–5962. [PMC free article] [PubMed]
  • Kartasova T, van Muijen GN, van Pelt-Heerschap H, van de Putte P. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation. Mol Cell Biol. 1988 May;8(5):2204–2210. [PMC free article] [PubMed]
  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Maita T, Umegane T, Kato Y, Matsuda G. Amino-acid sequence of the L-1 light chain of chicken cardiac-muscle myosin. Eur J Biochem. 1980 Jun;107(2):565–575. [PubMed]
  • Maizel JV, Jr, Lenk RP. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7665–7669. [PubMed]
  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. [PubMed]
  • Mulligan RC, Howard BH, Berg P. Synthesis of rabbit beta-globin in cultured monkey kidney cells following infection with a SV40 beta-globin recombinant genome. Nature. 1979 Jan 11;277(5692):108–114. [PubMed]
  • Ohlendorf DH, Matthews BW. Structural studies of protein-nucleic acid interactions. Annu Rev Biophys Bioeng. 1983;12:259–284. [PubMed]
  • Okayama H, Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. [PMC free article] [PubMed]
  • Ponec M, Kempenaar JA, De Kloet ER. Corticoids and cultured human epidermal keratinocytes: specific intracellular binding and clinical efficacy. J Invest Dermatol. 1981 Mar;76(3):211–214. [PubMed]
  • Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Wickens M, Stephenson P. Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science. 1984 Nov 30;226(4678):1045–1051. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)