PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1988 February; 8(2): 945–954.
PMCID: PMC363227

Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae.

Abstract

The haploid genome of Saccharomyces cerevisiae contains two nonallelic sets of histone H3 and H4 gene pairs, termed the copy I and copy II loci. The structures of the mRNA transcripts from each of these four genes were examined by nuclease protection and primer extension mapping. For each gene, several species of mRNAs were identified that differed in the lengths of their 5' and 3' untranslated regions. The cell cycle accumulation pattern of the H3 and H4 mRNAs was determined in cells from early-exponential-growth cultures fractionated by centrifugal elutriation. The RNA transcripts from all four genes were regulated with the cell division cycle, and transcripts from the nonallelic gene copies showed tight temporal coordination. Cell cycle regulation did not depend on selection of a particular histone mRNA transcript since the ratio of the multiple species from each gene remained the same across the division cycle. Quantitative measurements showed significant differences in the amounts of mRNA expressed from the two nonallelic gene sets. The mRNAs from the copy II H3 and H4 genes were five to seven times more abundant than the mRNAs from the copy I genes. There was no dosage compensation in the steady-state levels of mRNA when either set of genes was deleted. In particular, there was no increase in the amount of copy I H3 or H4 transcripts in cells in which the high-abundance copy II genes were deleted.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.5M), or click on a page image below to browse page by page.

Images in this article


Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)