Search tips
Search criteria 


Logo of mbcLink to Publisher's site
Mol Biol Cell. Mar 2004; 15(3): 1387–1396.
PMCID: PMC363150
Induction of Apoptosis in Starfish Eggs Requires Spontaneous Inactivation of MAPK (Extracellular Signal-regulated Kinase) Followed by Activation of p38MAPK
Kayoko Sasaki and Kazuyoshi Chiba*
Department of Biology, Ochanomizu University, Tokyo, 112-8610 Japan
Carl-Henrik Heldin, Monitoring Editor
* Corresponding author. E-mail address: kchiba/at/
Received June 6, 2003; Revised November 17, 2003; Accepted November 17, 2003.
Mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase) prevents DNA replication and parthenogenesis in maturing oocytes. After the meiotic cell cycle in starfish eggs, MAPK activity is maintained until fertilization. When eggs are fertilized, inactivation of MAPK occurs, allowing development to proceed. Without fertilization, highly synchronous apoptosis of starfish eggs starts 10 h after germinal vesicle breakdown, which varies according to season and individual animals. For induction of the apoptosis, MAPK should be activated for a definite period, called the MAPK-dependent period, during which eggs develop competence to die, although the exact duration of the period was unclear. In this study, we show that the duration of the MAPK-dependent period was ~8 h. Membrane blebbing occurred ~2 h after the MAPK-dependent period. Surprisingly, when MAPK was inhibited by U0126 after the MAPK-dependent period, activation of caspase-3 occurred earlier than in the control eggs. Thus, inactivation of MAPK is a prerequisite for apoptosis. Also, even in the absence of the inhibitor, MAPK was inactivated spontaneously when eggs began to bleb, indicating that inactivation of MAPK after the MAPK-dependent period acts upstream of caspase-3. Inactivation of MAPK also resulted in the activation of p38MAPK, which may contribute to apoptotic body formation.
Apoptosis plays critical roles in development and in the maintenance of homeostasis. Once triggered, the apoptotic program induces activation of a series of biochemical events. The best characterized pathway of apoptosis involves the release of cytochrome c from mitochondria, leading to the activation of caspase-9. The caspase-9 cleaves and activates caspase-3, which is the key enzyme to execute apoptosis (reviewed by Chang and Yang, 2000 blue right-pointing triangle). Caspase-3 cleaves a large number of proteins within the cell, leading to the orderly dismantling of the apoptotic cell (reviewed by Porter and Janicke, 1999 blue right-pointing triangle).
A mitogen-activated protein kinase kinase kinase phosphorylates and activates a MAP kinase kinase (MAPKK), which phosphorylates and activates mitogen-activated protein kinase (MAPK). In mammals, there are at least three genetically distinct groups of MAPK pathways, including extracellular signal-regulated kinase (ERK: MAPK), the c-Jun NH2-terminal kinase (JNK), and the p38MAPK (reviewed by Widmann et al., 1999 blue right-pointing triangle; Davis, 2000 blue right-pointing triangle). The JNK and the p38MAPK cascades are activated by many agents that induce apoptosis such as oxidative stress, UV radiation, transforming growth factor-β treatment, and anticancer drugs (Zanke et al., 1996 blue right-pointing triangle; Huot et al., 1998 blue right-pointing triangle; Tournier et al., 2000 blue right-pointing triangle; Edlund et al., 2003 blue right-pointing triangle). Inhibition of JNK and p38MAPK suppresses apoptosis induced by these agents. Although JNK and p38MAPK seem to be involved in modulating apoptosis, ERK is generally considered as a survival factor. In Drosophila, the Ras-MAPK signaling pathway promotes cell survival by inhibiting the expression and activity of the proapoptotic protein Hid (Kurada and White, 1998 blue right-pointing triangle). In rat cerebellar granule cells, MAP kinase-activated kinase, Rsk, phosphorylates the proapoptotic protein BAD. Phosphorylated BAD is inactivated and thus active Rsk prevents apoptosis by inhibiting BAD (Bonni et al., 1999 blue right-pointing triangle). Growth factor withdrawal down-regulates ERK and induces apoptosis in several cell systems, whereas activation of ERK during stress can be protective (Xia et al., 1995 blue right-pointing triangle; Guyton et al., 1996 blue right-pointing triangle). In rat PC-12 cells, apoptosis is regulated by a balance between activation of JNK, p38MAPK, and ERK (Xia et al., 1995 blue right-pointing triangle).
Fully grown starfish oocytes are arrested at prophase of meiosis I. Meiosis is reinitiated by 1-methyladenine (1-MA), which is released from follicle cells, causing germinal vesicle breakdown (GVBD) (Kanatani et al., 1969 blue right-pointing triangle). Just after GVBD, MAPK (ERK) is activated (Pelech et al., 1988 blue right-pointing triangle) by a newly synthesized Mos functioning as a mitogen-activated protein kinase kinase kinase (Tachibana et al., 2000 blue right-pointing triangle). When fertilization occurs during meiosis, a decrease of MAPK activity by a disappearance of Mos occurs during or after the second polar body formation, which initiates DNA synthesis and embryonic development (Picard et al., 1996 blue right-pointing triangle; Tachibana et al., 2000 blue right-pointing triangle). Without fertilization, MAPK activity is maintained even after meiotic divisions (Tachibana et al., 1997 blue right-pointing triangle; Fisher et al., 1998 blue right-pointing triangle; Sadler and Ruderman, 1998 blue right-pointing triangle), which is necessarily for induction of apoptosis (see below).
Although starfish immature oocytes can live >1 wk in seawater, postmeiotic eggs synchronously and rapidly undergo apoptosis in <24 h after 1-MA treatment (Sasaki and Chiba, 2001 blue right-pointing triangle; Yüce and Sadler, 2001 blue right-pointing triangle). Usually, in starfish Asterina pectinifera, caspase-3 activation occurs 8-12 h after 1-MA treatment, followed by membrane blebbing and apoptotic body formation. The timing of apoptosis depends on the animals and seasons, but apoptotic processes are highly synchronous in the same animal. When MAPK is blocked by an MAPK kinase inhibitor, apoptosis does not occur. Similar results are obtained when Mos synthesis is blocked by emetine to inhibit MAPK, whereas injection of recombinant Mos into emetine-treated eggs causes apoptosis several hours after injection. These results support the hypothesis that MAPK should be activated during a definite period to induce apoptosis, called the MAPK-dependent period (Sasaki and Chiba, 2001 blue right-pointing triangle). The MAPK-dependent period starts immediately after GVBD, and inhibition of MAPK before the end of the MAPK-dependent period blocks apoptosis. To study the role of MAPK in the induction of apoptosis, it is crucial to define the MAPK-dependent period.
U0126 (Promega, Madison, WI) and U0124 and SB203580 (Calbiochem, La Jolla, CA) were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM. 1-MA (1 mM), purchased from Kanto Kagaku Reagent Division (Tokyo, Japan), was dissolved in distilled water. These solutions were stored at -20°C.
Animal Maintenance, Gamete Collection, and Culture
Starfish A. pectinifera were collected on the Pacific coast of Honshu Island, Japan, and kept in laboratory aquaria supplied with circulating seawater at 10-17°C. To remove follicle cells, isolated ovaries were incubated in ice-cold Ca2+-free artificial seawater (480 mM NaCl, 10 mM KCl, 27 mM MgCl2, 29 mM MgSO4, 2 mM NaHCO3, or Ca2+-free Jamarin; Jamarin Laboratory, Osaka, Japan), and released oocytes were washed twice with Ca2+-free artificial seawater. Defolliculated oocytes were stored in artificial seawater (Ca2+-free Jamarin plus 9.2 mM CaCl2) at 20°C. Oocyte maturation was induced by the addition of 1 μM 1-MA. GVBD occurred around 20 min after 1-MA treatment. 1-MA was washed out of the culture 40-60 min after 1-MA treatment.
Transmission Electron Microscopy
Small portions of the egg suspension were sampled and fixed with OsO4 for 30 min on ice. The fixative contained 1% OsO4, 0.05% sodium cacodylate, and 1.5% potassium ferrocyanite in Ca2+-free artificial seawater. After dehydration in an ethanol series, the oocytes were embedded in Epon resin containing 14% Quetol653 (Okenshoji, Osaka, Japan), 23% ERL4206, 63% nonenyl succinic anhydride, and 0.5% S-1 (TAAB Laboratories Equipment, Berkshire, England). Ultrathin sections were mounted on a grid coated with Bioden mesh cement (Okenshoji) and then stained with uranyl acetate and lead citrate. Grids were examined using a JEOL-1230 electron microscope (JEOL, Tokyo, Japan).
Measurement of DEVD-MCA Cleavage Activity
Eggs were collected by centrifugation at 1800 × g for 2 min at 4°C. The eggs were resuspended in ice-cold buffer A (100 mM HEPES-NaOH, pH 7.5, 10 mM dithiothreitol; 0.05 μl/egg) and homogenized on ice. Egg homogenates were spun at 14,000 × g for 15 min at 4°C to obtain cytosolic extracts. Proteolytic reactions were carried out in 1 ml of buffer A, containing 50 μl of cytosolic extracts and 10 μM acetyl-Asp-Glu-Val-Asp- (4-methyl-coumaryl-7-amide) (Ac-DEVD-MCA; Peptide Institute, Osaka, Japan) at 20°C. The fluorogenic product substrate 7-amino-4-methylcoumarin was detected by excitation at 380 nm and emission at 460 nm with a fluorescence spectrophotometer (650-10 Sl; Hitachi, Tokyo, Japan), and the initial velocity of hydrolysis of the substrate by DEVDase was measured.
SDS-PAGE and Western Blotting
Eggs were pelleted by brief centrifugation to remove seawater. The egg pellet was resuspended in SDS-sample buffer at 0.33 μl/egg, heated to 95-100°C for 5 min, and subjected to gel electrophoresis. Typically, 10 μl of each sample (containing 30 eggs) was run on a 12.5% polyacrylamide gel. Proteins were transferred to a polyvinylidene difluoride transfer membrane (Immobilon-P; Millipore, Bedford, MA). The membrane was blocked with phosphate-buffered saline (PBS) containing 5% skim milk and incubated with an anti-rat ERK1 antibody (Seikagaku, Tokyo, Japan) for 45 min or an anti-active p38MAPK antibody (Promega) for 1 h at room temperature. After washing with PBS containing 0.05% Tween 20 (vol/vol), the membrane was incubated with a horseradish peroxidase-conjugated goat anti-rabbit antibody for 45 min at room temperature and then washed again. Bound antibody was detected using an ECL Western blotting analysis system (Amersham Biosciences, Piscataway, NJ) and an LAS-1000 lumino image analyzer (Fuji Photo Film, Tokyo, Japan). Western blots were sometimes stripped by using Western blot stripping buffer (Pierce Chemical, Rockford, IL) and reprobed with another antibody. When we use highly sensitive detection reagents (ECL+; Amersham Biosciences), the membrane was incubated overnight with an anti-active p38MAPK antibody at 4°C and then incubated for 1 h at room temperature. After washing with PBS containing 0.05% Tween 20 (vol/vol), the membrane was incubated with a horseradish peroxidase-conjugated goat anti-rabbit antibody for 1 h at room temperature.
Preparation of Recombinant Protein
To prepare glutathione S-transferase (GST), the pGEX-6P-3 vector was purchased from Amersham Biosciences. The GST-starfish Mos (GST-Mos) construct in the pGEX-4T-2 vector was kindly provided by Dr. Kazunori Tachibana (Tokyo Institute of Technology, Tokyo, Japan). The plasmids were transformed into the BL21 bacterial strain, followed by growth at 37°C for 1 h, chilled in ice water for 15 min, and then induced with 0.5 mM isopropyl β-d-thiogalactoside at 37°C for 3 h. Bacteria were then pelleted by centrifugation at 8000 × g for 5 min, resuspended in 50 ml of PBS containing 0.05% protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) per liter culture, and disrupted by sonication. The GST-Mos and GST were purified with glutathione-Sepharose 4B (Amersham Biosciences) and concentrated to 1.6 mg/ml in buffer B (20 mM HEPES, pH 6.8, 88 mM NaCl, 7.5 mM MgCl2) with Centricon YM-50 and Microcon YM-50 (Millipore). Aliquoted proteins were frozen in liquid nitrogen and stored at -80°C.
Microinjection into an egg and quantitation of injection volumes were performed according to the methods of Hiramoto (1974 blue right-pointing triangle) and Kishimoto (1986 blue right-pointing triangle). Ac-DEVD-CHO (Peptide Institute) dissolved in DMSO at a concentration of 10 mM was diluted with aspartate buffer (100 mM potassium aspartate, 20 mM HEPES, pH 7.2) to make 2.5 mM Ac-DEVD-CHO solution for injection. GST-Mos and GST was dissolved as described above. The injection volume of Ac-DEVD-CHO solution was ~3% of the total egg volume, and GST-Mos or GST was 10%. Oocytes were held between two coverslips separated by one piece of double-stick tape during microinjection and observation (Chiba et al., 1992 blue right-pointing triangle).
Morphological Changes during Starfish Egg Apoptosis
Immature oocytes of the starfish A. pectinifera were treated with 1-MA to reinitiate meiotic maturation. Oocytes completed both meiotic divisions to yield haploid interphase-arrested eggs (Figure 1A, a). Although the timing of the occurrence of blebbing depends on the animals, synchronous blebbing always starts between 8 and 12 h after 1-MA treatment (Sasaki and Chiba, 2001 blue right-pointing triangle). In this experiment, membrane blebbing started 10 h after 1-MA treatment and continued for ~1 h (Figure 1A, b and c). Blebbing then stopped, and fragmentation of eggs forming spherical vesicles occurred (Figure 1A, d and e). Electron microscopy showed that cytoplasmic elements such as mitochondria, yolk granules, and cortical granules remained intact in the vesicles as well as in the blebbing egg (Figure 1B). Generally in apoptosis, cessation of blebbing is followed by the formation of membrane-bound, roughly spherical cytoplasmic fragments containing intact organelles, called “apoptotic bodies”, or condensation into a single, shrunken ball (Kerr et al., 1972 blue right-pointing triangle; reviewed by Mills et al., 1999 blue right-pointing triangle). Thus, it is concluded that the vesicles or fragments formed after blebbing are apoptotic bodies in starfish egg apoptosis.
Figure 1.
Figure 1.
Time course of starfish egg death after 1-MA treatment. (A) To reinitiate meiosis, oocytes were stimulated by the addition of 1 μM 1-MA. Morphological changes were observed with a light microscope equipped with Nomarski differential interference (more ...)
Membrane blebbing and apoptotic body formation are hallmark morphological features of apoptosis. In addition, the key enzyme to execute apoptosis, caspase-3, is activated when starfish eggs initiate blebbing (Sasaki and Chiba, 2001 blue right-pointing triangle). Thus, membrane blebbing and apoptotic body formation observable with light microscopy of live samples provide an easy and reproducible assay for distinguishing viable from apoptotic cells. We used this morphological assay in the following experiments to characterize the apoptotic process in postmeiotic starfish eggs.
The MAPK-dependent Period for Induction of Apoptosis
For induction of starfish egg apoptosis, MAPK should be activated for a definite period, called the MAPK-dependent period (Sasaki and Chiba, 2001 blue right-pointing triangle), although the exact duration of the MAPK-dependent period was still unclear. If active MAPK is detected in the eggs at time T1 and if artificial inactivation of MAPK from time T1 causes blocking of apoptosis, time T1 is determined to be within the MAPK-dependent period. If artificial inactivation of MAPK after time T2 does not inhibit induction of apoptosis, time T2 is not within the MAPK-dependent period (the MAPK-dependent period has already finished).
Thus, to measure the length of the MAPK-dependent period, we blocked MAPK by using mitogen-activated protein kinase kinase (MEK) inhibitor U0126 at various times after 1-MA treatment. Because 50% inhibitory concentration of MAPK was ~0.1 μM in starfish eggs (Figure 2A), which is comparable with that of in COS-7 cells (Favata et al., 1998 blue right-pointing triangle), we treated eggs with 1 μM U0126. The percentage of apoptotic eggs was counted 11 h after 1-MA treatment. U0126 was suitable for our purpose, because MAPK was inactivated by 1 μM U0126 treatment within 45 min (Figure 7A). In this study, the end of the MAPK-dependent period is defined as the time of U0126 treatment after which >50% of the eggs will proceed into apoptosis even in the presence of the drugs.
Figure 2.
Figure 2.
The MAPK-dependent period for induction of apoptosis. (A) From 39 min after 1-MA treatment, eggs were treated with the specific MEK inhibitor U0126 or its inactive analog U0124 (100, 25, 0.4, and 0.1 μM). After incubation for 1 h (1 h 39 min after (more ...)
Figure 7.
Figure 7.
Effects of U0126 and Ac-DEVD-CHO on p38MAPK activation. (A) Inactivation of MAPK was followed by activation of p38MAPK. U0126 or U0124 (1 μM) was added to the egg culture 8 h 15 min after 1-MA treatment. Samples from eggs were taken at the indicated (more ...)
Using the results in Figure 2B, the MAPK-dependent period was estimated to continue until 7 h 18 min after 1-MA treatment (Figure 2C, a). Because GVBD occurred at 20 min after 1-MA treatment, the MAPK-dependent period should start from then. In this animal, the duration of MAPK-dependent period was ~7 h.
The MAPK-dependent period depends on the animal and season. The duration of the period varied from 5.5 to 8.5 h. Frequently, the end of the MAPK-dependent period was 8 h after 1-MA treatment, and 50% blebbing occurred ~2 h after the end of MAPK-dependent period.
When U0126 was added to the egg culture from 7 h after 1-MA treatment, 15% of eggs underwent apoptosis (Figure 2B). In these 15% of eggs, the MAPK-dependent period had probably finished. Interestingly, these eggs initiated membrane blebbing earlier than the control eggs treated with inactive analogue U0124. Similar acceleration of blebbing occurred when U0126 was administered immediately after MAPK-dependent period as shown in Figure 3A, a. U0126-treated and U0124-treated eggs revealed 50% blebbing at 8 h 05 min and 8 h 34 min after 1-MA treatment, respectively. Similar results were obtained using oocytes from different females (Figure 3, b and c). Also, U0126-treated eggs proceed from blebbing to apoptotic body formation within 1-1.5 h; essentially the same kinetics as eggs cultured in the absence of U0126 (Figure 3B). These results indicate that inactivation of MAPK after the MAPK-dependent period accelerates the initiation of blebbing but does not prolong or shorten the execution phase. These results also suggest that inactivation of MAPK after the MAPK-dependent period is prerequisite to blebbing initiation because spontaneous inactivation of MAPK occurs at about the same time as the eggs initiated membrane blebbing (Sasaki and Chiba, 2001 blue right-pointing triangle; Figure 5A). Thus, after the MAPK-dependent period, MAPK activity seems to act to inhibit blebbing initiation.
Figure 3.
Figure 3.
Effects of MAPK inactivation on the execution of apoptosis. The initiation of membrane blebbing and the initiation of apoptotic body formation were accelerated by U0126 treatment. (A) The percentage of apoptotic cells (as determined by blebbing or apoptotic (more ...)
Figure 5.
Figure 5.
Dynamics of MAPK and p38MAPK through starfish egg apoptosis. (A) The percentage of apoptotic cells was counted under a light microscope at the indicated timings after 1-MA treatment. Each symbol represents the results from 100 eggs. At the same time, (more ...)
Inactivation of MAPK after the MAPK-dependent Period Is Required for Caspase-3 Activation
In starfish eggs, execution of apoptosis (membrane blebbing and apoptotic body formation) is regulated by the activity of caspase-3 (Sasaki and Chiba, 2001 blue right-pointing triangle). To determine whether the timing of caspase-3 activation is accelerated in U0126-treated eggs, we measured the activity of caspase-3 by the cleavage of the peptide substrate Ac-DEVD-MCA. As shown in Figure 4, A and B, both the onset of apoptosis and caspase-3 activation were accelerated by U0126 treatment. Also, initiation of >50% blebbing as well as caspase-3 activation occurred within 1 h after U0126 treatment. Thus, inactivation of MAPK after the MAPK-dependent period is required for apoptosis.
Figure 4.
Figure 4.
Inhibition of MAPK after the MAPK-dependent period is required for caspase-3 activation. (A) Eggs were treated with 1 μM U0126 or U0124 (control inactive analog) at 7 h (a), 7.5 h (b), and 6.5 h (c) after 1-MA treatment. The percentage of apoptotic (more ...)
Dynamics of MAPK and p38MAPK during Starfish Egg Apoptosis
Next, we examined the timing of blebbing and dynamics of MAPK of starfish eggs without U0126 treatment. Exposure of oocytes to 1-MA led to the activation of MAPK at ~30 min. The active form of MAPK persists for almost 10 h after 1-MA treatment. Immediately before the onset of blebbing, a small proportion of the MAPK became inactive even in the absence of U0126 (Figure 5A). At 11 h, a large quantity of MAPK was spontaneously inactivated, followed by initiation of blebbing. Thus, it is likely that MAPK inactivation causes execution of apoptosis. Also, artificial inactivation of MAPK after the MAPK-dependent period resulted in caspase-3 activation (Figure 4). Thus, cell death probably occurs in the following order: persistent activation of MAPK during the MAPK-dependent period, MAPK inactivation, caspase-3 activation, and execution of apoptosis. Inactivation of MAPK does not act downstream of caspase-3 as shown in Figure 7B (see below).
Another MAPK family protein, p38MAPK, plays critical roles in stress responses and apoptosis in many cell lines (reviewed by Widmann et al., 1999 blue right-pointing triangle; Harper and LoGrasso, 2001 blue right-pointing triangle). To determine whether p38MAPK was activated in apoptotic starfish eggs, oocytes and eggs were collected and then subjected to SDS-PAGE and immunoblotting with an active p38MAPK-specific polyclonal antibody. This antibody has been shown to specifically detect dually phosphorylated p38MAPK from human, mouse, and Drosophila cells. As expected, we could detect a putative active starfish p38MAPK band (apparent molecular mass of 38.5 kDa) when apoptotic eggs formed (Figure 5A). Although we did not detect the strong active starfish p38MAPK band in GV oocytes (Figure 5A, 0 h), Morrison et al. (2000 blue right-pointing triangle) reported that p38MAPK of the starfish Pisaster ochraceus is activated in immature oocytes and inactivated just before or during GVBD. When we used highly sensitive reagents, we could confirm that a weak p38.5 kDa-band on immunoblot of GV oocytes (Figure 5B, 0 h) disappeared after GVBD (Figure 5B, 0.5 h).
SB203580, an inhibitor of p38MAPK but not of p38MAPK-kinase MKK3 or MKK6, prevents phosphorylation of p38MAPK in many experimental systems, presumably via inhibiting its autophosphorylation (Ge et al., 2002 blue right-pointing triangle). In addition, p38MAPK of the starfish P. ochraceus is suggested to be an autophosphorylating kinase (Morrison et al., 2000 blue right-pointing triangle). If this is the case, SB203580 inhibits phosphorylation of p38MAPK in apoptotic eggs. Indeed, as shown in Figure 5C, the 38.5-kDa band was not detected by the antibody, when we treated eggs with SB203580. This finding supports the identification of p38.5 as authentic active p38MAPK.
Just around GVBD, MAPK was activated and p38MAPK was inactivated (Figure 5, A and B). Conversely, when eggs began to bleb, MAPK is inactivated and p38MAPK was activated, suggesting that there may be some connection between the two pathways. Also, because p38MAPK was highly activated when eggs initiated blebbing (Figure 5A), starfish p38MAPK is likely to participate to the execution of apoptosis. The role of weakly activated p38MAPK in GV oocytes is unknown.
Microinjection of the GST-Starfish Mos Fusion Protein into Eggs Delayed Execution of Apoptosis
If execution of apoptosis depends on the inactivation of MAPK, apoptosis should be inhibited by the microinjection of exogenous Mos, which activates the Mos/MEK/MAPK pathway. Indeed, when we injected recombinant GST-starfish Mos fusion protein (GST-Mos, 160 μg/ml final concentration) into the eggs 8-9 h after 1-MA treatment (before the initiation of blebbing), initiation of blebbing of injected eggs was delayed ~2 h (Figure 6, a-c). As a control, injection of GST alone had no effect on execution of apoptosis (Figure 7, g-l). These results indicate that continuous activation of the Mos/MEK/MAP kinase cascade after the MAPK-dependent period had inhibitory effects on execution of apoptosis. Because occurrence of blebbing was delayed but not completely blocked in GST-Mos-injected eggs, these eggs might have strong activity to inactivate the MAPK pathway, or there may be some another component to activate caspase-3 other than MAPK inactivation.
Figure 6.
Figure 6.
Microinjection of the GST-starfish Mos fusion protein into eggs. Microinjection of the GST-starfish Mos fusion protein (GSTMos) into eggs delayed execution of apoptosis. Eggs were microinjected with GST-Mos (a-f) or GST (g-l) 8-9 h after 1-MA treatment, (more ...)
Inactivation of MAPK after the MAPK-dependent Period Is Followed by Activation of p38MAPK
To determine whether activation of p38MAPK occurred after inactivation of MAPK, we treated the eggs with U0126 at 8 h 15 min after 1-MA treatment. As shown in Figure 7A, the timing of p38MAPK activation as well as blebbing initiation was accelerated by U0126 treatment. These results strongly suggested that inactivation of MAPK acts upstream of p38MAPK.
Eggs injected with Ac-DEVD-CHO fail to undergo membrane blebbing and apoptotic body formation, because Ac-DEVD-CHO blocks caspase-3-dependent blebbing (Sasaki and Chiba, 2001 blue right-pointing triangle). To investigate whether p38MAPK was activated downstream of caspase-3, Ac-DEVD-CHO was microinjected into the cytoplasm of mature eggs at 5 h after 1-MA treatment. As shown in Figure 7B, at 14 h after 1-MA treatment, both inactivation of MAPK and activation of p38MAPK occurred normally in the injected eggs, whereas blebbing was completely blocked. In the control, those without injection initiated blebbing, and both inactivation of MAPK and activation of p38MAPK occurred. These results indicate that p38MAPK activation is not dependent on caspase-3 activation. Thus, it is concluded that the p38MAPK activation is not a consequence of stressful conditions generated by apoptosis but is likely to occur before or in parallel with activation of caspase-3.
Involvement of p38MAPK in Apoptotic Body Formation
To determine whether p38MAPK contributed some feature of apoptosis, we treated eggs with the specific p38MAPK inhibitor SB203580 just before the onset of blebbing (10.5 h after 1-MA treatment). As shown in Figure 8a, SB203580 did not block the blebbing. Apoptotic body formation, however, was severely inhibited in the SB203580-treated eggs, exhibiting an almost rounded morphology (Figure 8, b and c, arrows) with remaining small protrusions (Figure 8, b and c, arrowheads). The small protrusions were separated spontaneously from the rounded egg, and finally they degraded and released apoptotic body-like particles (Figure 8d, arrowhead). The egg still exhibited a rounded morphology even at 20 h after 1-MA treatment (Figure 8d, arrow). These results indicate that p38MAPK may contribute to apoptotic body formation.
Figure 8.
Figure 8.
Effects of p38MAPK inactivation on apoptotic body formation. Eggs were treated with 100 μM SB203580 (a-d) or 1% DMSO (e-h) 10.5 h after 1-MA treatment. 8% of eggs had just begun to bleb 10.5 h after 1-MA treatment. Photographs were taken 11 h (more ...)
In this study, we found that MAPK has both positive and negative functions in the induction of starfish egg apoptosis. During the MAPK-dependent period (~8 h after 1-MA treatment), inactivation of MAPK blocked apoptosis, indicating that it gives the death-activating signal. Conversely, after the MAPK-dependent period but before blebbing (~8-10 h after 1-MA treatment), inactivation of MAPK resulted in caspase-3 activation, causing apoptosis. Moreover, p38MAPK, which is generally considered as a death factor (Xia et al., 1995 blue right-pointing triangle; Kummer et al., 1997 blue right-pointing triangle) was activated immediately after the inactivation of MAPK. Thus, starfish MAPK gives the death-suppressing signal after the MAPK-dependent period.
During the MAPK-dependent period, starfish eggs are likely to develop competence to die, as reported in mammalian sympathetic neurons. After nerve growth factor deprivation, apoptosis of sympathetic neurons requires the activation of two events: a protein synthesis dependent, Bax-dependent release of mitochondrial cytochrome c and protein synthesis-independent, Bax-independent development of competence. Unlike most cells, cytosolic cytochrome c is not sufficient to induce cell death in nerve growth factor-maintained sympathetic neurons but can do so in the neurons that have developed competence (Deshmukh and Johnson, 1998 blue right-pointing triangle). It is suggested that development of competence may be the result of the loss of function of one or more members of the inhibitor of apoptosis family blocking caspases (Deshmukh et al., 2002 blue right-pointing triangle). Because cytoplasmic microinjection of cytochrome c into the starfish eggs during the MAPK-dependent period did not accelerate apoptosis (our unpublished data), continuous MAPK activity during the MAPK-dependent period may contribute to development of competence for cytochrome c to induce cell death.
Usually in mammalian apoptosis, the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification to inhibit a component of the cell death machinery and the increased transcription of prosurvival genes. Because inactivation of MAPK after the MAPK-dependent period resulted in caspase-3 activation in starfish eggs (within 1 h after U0126 treatment; Figure 4B), MAPK may regulate the apoptotic machinery directly or indirectly, presumably via phosphorylation. It is reported that egg extracts prepared from the frog Xenopus laevis initiate and execute a full apoptotic program in vitro when egg extracts are “aged” on the bench (Newmeyer et al., 1994 blue right-pointing triangle). Interestingly, activation of the Mos/MEK/MAPK pathway inhibits postcytochrome c release apoptotic events in Xenopus extracts in the absence of new mRNA/protein synthesis (Tashker et al., 2002 blue right-pointing triangle). Because cytoplasmic microinjection of cytochrome c into the starfish eggs did not accelerate apoptosis as described above, starfish MAPK may also inhibit the postcytochrome c release event in starfish eggs.
In mammals, two proapoptotic Bcl-2-family proteins, Bad and Bim, are involved in apoptosis after withdrawal of survival factors. MAP kinase-activated kinase Rsk phosphorylates the proapoptotic protein BAD. Phosphorylated BAD is inactivated, and thus active Rsk prevents apoptosis by inhibiting BAD (Bonni et al., 1999 blue right-pointing triangle; Shimamura et al., 2000 blue right-pointing triangle). The MAPK pathway-dependent phosphorylation of Bim targets Bim for degradation by the proteasome pathway (Ley et al., 2003 blue right-pointing triangle). In the absence of survival factors, dephosphorylated Bim inhibits antiapoptotic proteins such as Bcl-2 and render the cells more susceptible to apoptogenic stimuli (Terradillos et al., 2002 blue right-pointing triangle). It is possible that starfish MAPK inactivates starfish Bad and Bim and suppresses apoptosis after the MAPK-dependent period. Spontaneous inactivation of MAPK then occurs, causing caspase-3 activation. In Drosophila, proapoptotic protein Hid induces apoptosis by blocking a caspase inhibitor, Diap1 (Bergmann et al., 2002 blue right-pointing triangle). It is known that activation of the Ras/MAPK pathway inhibits Hid-induced apoptosis (Kurada and White, 1998 blue right-pointing triangle), and phosphorylation of Hid by MAPK is thought to inactivate Hid (Bergmann et al., 1998 blue right-pointing triangle). Starfish MAPK may phosphorylate and inhibit a Hid-like protein in eggs.
We also demonstrated in this study that U0126 treatment resulted in the activation of p38MAPK. This result strongly suggested that inactivation of MAPK acts upstream of p38MAPK activation. In addition, just after GVBD, MAPK is activated (Pelech et al., 1988 blue right-pointing triangle) by a newly synthesized Mos (Tachibana et al., 2000 blue right-pointing triangle), and p38MAPK was inactivated just about the same time (Figure 5B; Morrison et al., 2000 blue right-pointing triangle). Activation of MAPK may inhibit p38MAPK activation in starfish eggs.
Because activation of p38MAPK occurred spontaneously even in the eggs injected with caspase-3 inhibitor Ac-DEVDCHO (Figure 7B), p38MAPK does not act downstream of caspase-3. Further studies are required to determine whether p38MAPK acts upstream of caspase-3.
Regulation of actin dynamics is one of the functions of the p38MAPK pathway. After activation by p38MAPK, MAP kinase-activated protein kinase-2 phosphorylates HSP27, a protein that can modulate actin polymerization (Huot et al., 1998 blue right-pointing triangle; Landry and Huot, 1999 blue right-pointing triangle). Interestingly, apoptotic body formation is regulated by actin polymerization in starfish eggs (Sasaki and Chiba, 2001 blue right-pointing triangle), and the p38MAPK-specific inhibitor SB203580 antagonized apoptotic body formation. Thus, it is likely that p38MAPK in starfish also contributes to actin polymerization.
We and others had demonstrated that postmeiotic starfish eggs undergo apoptosis, if they were not fertilized (Sasaki and Chiba, 2001 blue right-pointing triangle; Yüce and Sadler, 2001 blue right-pointing triangle). It was also reported that unfertilized ovulated murine oocytes cultured in vitro spontaneously undergo apoptosis (Takase et al., 1995 blue right-pointing triangle; Fujino et al., 1996 blue right-pointing triangle; Perez et al., 1999 blue right-pointing triangle). Thus, in some species of animal, the default fate of the ovulated eggs is death by apoptosis. To understand normal development, it is important to know how eggs undergo apoptosis and how apoptosis is suppressed after fertilization. Starfish is a good model for studying postmeiotic egg apoptosis, because it is easy to obtain a large quantity of homogenous eggs that synchronously undergo apoptosis in vitro.
Moreover, apoptosis is a widespread event in oogenesis (reviewed by Matova and Cooley, 2001 blue right-pointing triangle). The role of apoptosis in the female gamete life cycle has been most extensively studied in mammals, despite the difficulty in obtaining and culturing sufficient quantities of the oocytes and eggs. In mammals, more than two-thirds of the potential germ cell pool (oogonia and oocytes) is lost through apoptosis by the time of birth (reviewed by Morita and Tilly, 1999 blue right-pointing triangle), and >99% of the postnatal oocytes, which are not ovulated, also undergo apoptosis. Although morphological changes during mammalian oocyte death are well studied, little is known about the molecular mechanisms responsible for initiating or executing oocyte apoptosis. It may be possible that studies of starfish egg apoptosis may lend insights into apoptotic events in mammals. Also, in the nematode Caenorhabditis elegans, more than one-half of the hermaphrodite germ cells in adult gonad are eliminated through apoptosis, when they are about to exit the pachytene stage of meiotic prophase I. Because the oocytes of mutants in the ras/MAP kinase pathway fail to exit the pachytene stage of meiosis I and fail to die, the ras/MAP kinase pathway might directly regulate the cell death machinery, or might indirectly affect germ cell apoptosis by promoting the progression of pachytene stage cells, which are resistant to apoptosis, to a later differentiation stage that is more sensitive to proapoptotic signals (Gumienny et al., 1999 blue right-pointing triangle). Although the molecular mechanisms of pro- and antiapoptotic effects of MAPK in nematode as well as starfish are still unclear, similar apoptotic pathways may be shared.
The time after ovulation during which mammalian eggs can give rise to developmentally competent embryo is short. Under in vivo conditions, ovulated mouse eggs exhibit maximum ability to fertilize for only 4-6 h (Lewis and Wright, 1935 blue right-pointing triangle). Oocytes that are fertilized after this optimal period exhibit severely compromised developmental success that often culminates in fragmentation of blastomeres and embryonic death (Marston and Chang, 1964 blue right-pointing triangle). Also, in starfish, optimal development occurs when maturing oocytes are fertilized between GVBD and first polar body emission. Fertilization of eggs after completion of meiosis usually results in polyspermy (Fujimori and Hirai, 1979 blue right-pointing triangle). Therefore, it is apparent that postovulatory processes occurring in the egg have a significant effect on development. It is tempting to speculate that with increasing time of postovulation, the ability of fertilization to inhibit apoptotic process is reduced, resulting in abnormal development.
The target molecules of MAPK and p38MAPK for apoptotic cell death as well as cell survival have to be identified to further understand the molecular mechanism of determining the egg fate, i.e., whether the cells undergo development or apoptosis.
We thank Dr. Kazunori Tachibana for providing GST-starfish Mos clones and for helpful advice. This study was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a grant from Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists, the Human Frontier Science Program, and by funds from the Cooperative Program provided by Ocean Research Institute, University of Tokyo.
Article published online ahead of print. Mol. Biol. Cell 10.1091/mbc.E03-06-0367. Article and publication date are available at
  • Bergmann, A., Agapite, J., McCall, K., and Steller, H. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331-341. [PubMed]
  • Bergmann, A., Tugentman, M., Shilo, B.Z., and Steller, H. (2002). Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell 2, 159-170. [PubMed]
  • Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A., and Greenberg, M.E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362. [PubMed]
  • Chang, H.Y., and Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821-846. [PMC free article] [PubMed]
  • Chiba, K., Tadenuma, H., Matsumoto, M., Takahashi, K., Katada, T., and Hoshi, M. (1992). The primary structure of the α subunit of a starfish guanosine-nucleotide-binding regulatory protein involved in 1-methyladenine-induced oocyte maturation. Eur. J. Biochem. 207, 833-838. [PubMed]
  • Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252. [PubMed]
  • Deshmukh, M., Du, C., Wang, X., and Johnson, E.M., Jr. (2002). Exogenous smac induces competence and permits caspase activation in sympathetic neurons. J. Neurosci. 22, 8018-8027. [PubMed]
  • Deshmukh, M., and Johnson, E.M., Jr. (1998). Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 695-705. [PubMed]
  • Edlund, S., Bu, S., Schuster, N., Aspenstrom, P., Heuchel, R., Heldin, N.E., Ten Dijke, P., Heldin, C.H., and Landstrom, M. (2003). Transforming Growth Factor-β1 (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol. Biol. Cell 14, 529-544. [PMC free article] [PubMed]
  • Favata, M.F., et al. (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623-18632. [PubMed]
  • Fisher, D., Abrieu, A., Simon, M.N., Keyse, S., Verge, V., Doree, M., and Picard, A. (1998). MAP kinase inactivation is required only for G2-M phase transition in early embryogenesis cell cycles of the starfishes Marthasterias glacialis and Astropecten aranciacus. Dev. Biol. 202, 1-13. [PubMed]
  • Fujimori, T., and Hirai, S. (1979). Differences in starfish oocyte susceptibility to polyspermy during the course of maturation. Biol. Bull. 157, 249-257.
  • Fujino, Y., Ozaki, K., Yamamasu, S., Ito, F., Matsuoka, I., Hayashi, E., Nakamura, H., Ogita, S., Sato, E., and Inoue, M. (1996). DNA fragmentation of oocytes in aged mice. Hum. Reprod. 11, 1480-1483. [PubMed]
  • Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R.J., Luo, Y., and Han, J. (2002). MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295, 1291-1294. [PubMed]
  • Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R., and Hengartner, M.O. (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011-1022. [PubMed]
  • Guyton, K.Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N.J. (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem. 271, 4138-4142. [PubMed]
  • Harper, S.J., and LoGrasso, P. (2001). Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 13, 299-310. [PubMed]
  • Hiramoto, Y. (1974). A method of microinjection. Exp. Cell Res. 87, 403-406. [PubMed]
  • Huot, J., Houle, F., Rousseau, S., Deschesnes, R.G., Shah, G.M., and Landry, J. (1998). SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J. Cell Biol. 143, 1361-1373. [PMC free article] [PubMed]
  • Kanatani, H., Shirai, H., Nakanishi, K., and Kurokawa, T. (1969). Isolation and identification on meiosis inducing substance in starfish Asterias amurensis. Nature 221, 273-274. [PubMed]
  • Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. [PMC free article] [PubMed]
  • Kishimoto, T. (1986). Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell Biol. 27, 379-394. [PubMed]
  • Kummer, J.L., Rao, P.K., and Heidenreich, K.A. (1997). Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 20490-20494. [PubMed]
  • Kurada, P., and White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319-329. [PubMed]
  • Landry, J., and Huot, J. (1999). Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem. Soc. Symp. 64, 79-89. [PubMed]
  • Lewis, W.H., and Wright, E.S. (1935). On the early development of the mouse egg. Carnegie Inst. Contrib. Embryol. 25, 113-143.
  • Ley, R., Balmanno, K., Hadfield, K., Weston, C.R., and Cook, S.J. (2003). Activation of the ERK1/2 signalling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein Bim. J. Biol. Chem. J. Biol. Chem. 278, 18811-18816. [PubMed]
  • Marston, J.H., and Chang, M.C. (1964). The fertilizable life of ova and their morphology following delayed insemination in mature and immature mice. J. Exp. Zool. 155, 237-251. [PubMed]
  • Matova, N., and Cooley, L. (2001). Comparative aspects of animal oogenesis. Dev. Biol. 231, 291-320. [PubMed]
  • Mills, J.C., Stone, N.L., and Pittman, R.N. (1999). Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J. Cell Biol. 146, 703-708. [PMC free article] [PubMed]
  • Morita, Y., and Tilly, J.L. (1999). Oocyte apoptosis: like sand through an hourglass. Dev. Biol. 213, 1-17. [PubMed]
  • Morrison, D.L., Yee, A., Paddon, H.B., Vilimek, D., Aebersold, R., and Pelech, S.L. (2000). Regulation of the meiosis-inhibited protein kinase, a p38(MAPK) isoform, during meiosis and following fertilization of seastar oocytes. J. Biol. Chem. 275, 34236-34244. [PubMed]
  • Newmeyer, D.D., Farschon, D.M., and Reed, J.C. (1994). Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353-364. [PubMed]
  • Pelech, S.L., Tombes, R.M., Meijer, L., and Krebs, E.G. (1988). Activation of myelin basic protein kinases during echinoderm oocyte maturation and egg fertilization. Dev. Biol. 130, 28-36. [PubMed]
  • Perez, G.I., Tao, X.J., and Tilly, J.L. (1999). Fragmentation and death (a. k. a. apoptosis) of ovulated oocytes. Mol. Hum. Reprod. 5, 414-420. [PubMed]
  • Picard, A., Galas, S., Peaucellier, G., and Doree, M. (1996). Newly assembled cyclin B-cdc2 kinase is required to suppress DNA replication between meiosis I and meiosis II in starfish oocytes. EMBO J. 15, 3590-3598. [PubMed]
  • Porter, A.G., and Janicke, R.U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99-104. [PubMed]
  • Sadler, K.C., and Ruderman, J.V. (1998). Components of the signaling pathway linking the 1-methyladenine receptor to MPF activation and maturation in starfish oocytes. Dev. Biol. 197, 25-38. [PubMed]
  • Sasaki, K., and Chiba, K. (2001). Fertilization blocks apoptosis of starfish eggs by inactivation of the MAP kinase pathway. Dev. Biol. 237, 18-28. [PubMed]
  • Shimamura, A., Ballif, B.A., Richards, S.A., and Blenis, J. (2000). Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr. Biol. 10, 127-135. [PubMed]
  • Tachibana, K., Machida, T., Nomura, Y., and Kishimoto, T. (1997). MAP kinase links the fertilization signal transduction pathway to the G1/S-phase transition in starfish eggs. EMBO J. 16, 4333-4339. [PubMed]
  • Tachibana, K., Tanaka, D., Isobe, T., and Kishimoto, T. (2000). c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc. Natl. Acad. Sci. USA 97, 14301-14306. [PubMed]
  • Takase, K., Ishikawa, M., and Hoshiai, H. (1995). Apoptosis in the degeneration process of unfertilized mouse ova. Tohoku J. Exp. Med. 175, 69-76. [PubMed]
  • Tashker, J.S., Olson, M., and Kornbluth, S. (2002). Post-cytochrome C protection from apoptosis conferred by a MAPK pathway in Xenopus egg extracts. Mol. Biol. Cell 13, 393-401. [PMC free article] [PubMed]
  • Terradillos, O., Montessuit, S., Huang, D.C., and Martinou, J.C. (2002). Direct addition of BimL to mitochondria does not lead to cytochrome c release. FEBS Lett. 522, 29-34. [PubMed]
  • Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A., and Davis, R.J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. [PubMed]
  • Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143-180. [PubMed]
  • Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. [PubMed]
  • Yüce, O., and Sadler, K.C. (2001). Postmeiotic unfertilized starfish eggs die by apoptosis. Dev. Biol. 237, 29-44. [PubMed]
  • Zanke, B.W., Boudreau, K., Rubie, E., Winnett, E., Tibbles, L.A., Zon, L., Kyriakis, J., Liu, F.F., and Woodgett, J.R. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr. Biol. 6, 606-613. [PubMed]
Articles from Molecular Biology of the Cell are provided here courtesy of
American Society for Cell Biology