PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1989 September; 9(9): 3992–3998.
PMCID: PMC362461

Regulation of STA1 gene expression by MAT during the life cycle of Saccharomyces cerevisiae.

Abstract

STA1 encodes a secreted glucoamylase of the yeast Saccharomyces cerevisiae var. diastaticus. Glucoamylase secretion is controlled by the mating type locus MAT; a and alpha haploid yeast cells secrete high levels of the enzyme, but a/alpha diploid cells produce undetectable amounts. It has been suggested that STA1 is regulated by MATa2 (I. Yamashita, Y. Takano, and S. Fukui, J. Bacteriol. 164:769-773, 1985), which is a MAT transcript of previously unknown function. In contrast, this work shows that deletion of the entire MATa2 gene had no effect on STA1 regulation but that deletion of MATa1 sequences completely abolished mating-type control. In all cases, glucoamylase activity levels reflected STA1 mRNA levels. It appears that STA1 is a haploid-specific gene that is regulated by MATa1 and a product of the MAT alpha locus and that this regulation occurs at the level of RNA accumulation. STA1 expression was also shown to be glucose repressible. STA1 mRNA was induced in diploids during sporulation along with SGA, a closely linked gene that encodes an intracellular sporulation-specific glucoamylase of S. cerevisiae. A diploid strain with a MATa1 deletion showed normal induction of STA1 in sporulation medium, but SGA expression was abolished. Therefore, these two homologous and closely linked glucoamylase genes are induced by different mechanisms during sporulation. STA1 induction may be a response to the starvation conditions necessary for sporulation, while SGA induction is governed by the pathway by which MAT regulates sporulation. The strain containing a complete deletion of MATa2 grew, mated, and sporulated normally.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Beggs JD. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. [PubMed]
  • Bender A, Sprague GF., Jr MAT alpha 1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell. 1987 Aug 28;50(5):681–691. [PubMed]
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. [PubMed]
  • Clancy MJ, Buten-Magee B, Straight DJ, Kennedy AL, Partridge RM, Magee PT. Isolation of genes expressed preferentially during sporulation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 May;80(10):3000–3004. [PubMed]
  • Clancy MJ, Smith LM, Magee PT. Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. Mol Cell Biol. 1982 Feb;2(2):171–178. [PMC free article] [PubMed]
  • Colonna WJ, Magee PT. Glycogenolytic enzymes in sporulating yeast. J Bacteriol. 1978 Jun;134(3):844–853. [PMC free article] [PubMed]
  • Elder RT, St John TP, Stinchcomb DT, Davis RW, Scherer S, Davis RW. Studies on the transposable element Ty1 of yeast. I. RNA homologous to Ty1. II. Recombination and expression of Ty1 and adjacent sequences. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):581–591. [PubMed]
  • Emr SD, Schekman R, Flessel MC, Thorner J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7080–7084. [PubMed]
  • Goutte C, Johnson AD. a1 protein alters the DNA binding specificity of alpha 2 repressor. Cell. 1988 Mar 25;52(6):875–882. [PubMed]
  • Hanes SD, Koren R, Bostian KA. Control of cell growth and division in Saccharomyces cerevisiae. CRC Crit Rev Biochem. 1986;21(2):153–223. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Jensen R, Sprague GF, Jr, Herskowitz I. Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc Natl Acad Sci U S A. 1983 May;80(10):3035–3039. [PubMed]
  • Johnson AD, Herskowitz I. A repressor (MAT alpha 2 Product) and its operator control expression of a set of cell type specific genes in yeast. Cell. 1985 Aug;42(1):237–247. [PubMed]
  • Kassir Y, Simchen G. Regulation of mating and meiosis in yeast by the mating-type region. Genetics. 1976 Feb;82(2):187–206. [PubMed]
  • Miller AM, MacKay VL, Nasmyth KA. Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast. Nature. 1985 Apr 18;314(6012):598–603. [PubMed]
  • Mitchell AP, Herskowitz I. Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature. 319(6056):738–742. [PubMed]
  • Nasmyth K, Shore D. Transcriptional regulation in the yeast life cycle. Science. 1987 Sep 4;237(4819):1162–1170. [PubMed]
  • Pardo JM, Polaina J, Jiménez A. Cloning of the STA2 and SGA genes encoding glucoamylases in yeasts and regulation of their expression by the STA10 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 1986 Jun 25;14(12):4701–4718. [PMC free article] [PubMed]
  • Percival-Smith A, Segall J. Isolation of DNA sequences preferentially expressed during sporulation in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):142–150. [PMC free article] [PubMed]
  • Pretorius IS, Chow T, Marmur J. Identification and physical characterization of yeast glucoamylase structural genes. Mol Gen Genet. 1986 Apr;203(1):36–41. [PubMed]
  • Pretorius IS, Chow T, Modena D, Marmur J. Molecular cloning and characterization of the STA2 glucoamylase gene of Saccharomyces diastaticus. Mol Gen Genet. 1986 Apr;203(1):29–35. [PubMed]
  • Pretorius IS, Modena D, Vanoni M, Englard S, Marmur J. Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces species. Mol Cell Biol. 1986 Sep;6(9):3034–3041. [PMC free article] [PubMed]
  • Rose MD. Isolation of genes by complementation in yeast. Methods Enzymol. 1987;152:481–504. [PubMed]
  • Rose M, Grisafi P, Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. [PubMed]
  • Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 1980 Dec 11;8(23):5779–5794. [PMC free article] [PubMed]
  • Sprague GF, Jr, Blair LC, Thorner J. Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu Rev Microbiol. 1983;37:623–660. [PubMed]
  • Sprague GF, Jr, Jensen R, Herskowitz I. Control of yeast cell type by the mating type locus: positive regulation of the alpha-specific STE3 gene by the MAT alpha 1 product. Cell. 1983 Feb;32(2):409–415. [PubMed]
  • Strathern J, Hicks J, Herskowitz I. Control of cell type in yeast by the mating type locus. The alpha 1-alpha 2 hypothesis. J Mol Biol. 1981 Apr 15;147(3):357–372. [PubMed]
  • Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. [PubMed]
  • Tatchell K, Nasmyth KA, Hall BD, Astell C, Smith M. In vitro mutation analysis of the mating-type locus in yeast. Cell. 1981 Nov;27(1 Pt 2):25–35. [PubMed]
  • Yamashita I, Fukui S. Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1985 Nov;5(11):3069–3073. [PMC free article] [PubMed]
  • Yamashita I, Maemura T, Hatano T, Fukui S. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):574–582. [PMC free article] [PubMed]
  • Yamashita I, Suzuki K, Fukui S. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):567–573. [PMC free article] [PubMed]
  • Yamashita I, Takano Y, Fukui S. Control of STA1 gene expression by the mating-type locus in yeasts. J Bacteriol. 1985 Nov;164(2):769–773. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)