PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1989 June; 9(6): 2695–2705.
PMCID: PMC362342

Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.

Abstract

Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several putative activation sites with sequences matching the core element proposed to be essential for binding of the HAP2 and HAP3 regulatory proteins.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350–5354. [PubMed]
  • Beggs JD. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. [PubMed]
  • Berk AJ, Sharp PA. Spliced early mRNAs of simian virus 40. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1274–1278. [PubMed]
  • CHEN RF, PLAUT GW. ACTIVATION AND INHIBITION OF DPN-LINKED ISOCITRATE DEHYDROGENASE OF HEART BY CERTAIN NUCLEOTIDES. Biochemistry. 1963 Sep-Oct;2:1023–1032. [PubMed]
  • Darlison MG, Spencer ME, Guest JR. Nucleotide sequence of the sucA gene encoding the 2-oxoglutarate dehydrogenase of Escherichia coli K12. Eur J Biochem. 1984 Jun 1;141(2):351–359. [PubMed]
  • Spencer ME, Darlison MG, Stephens PE, Duckenfield IK, Guest JR. Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. Eur J Biochem. 1984 Jun 1;141(2):361–374. [PubMed]
  • Dickinson JR, Roy DJ, Dawes IW. A mutation affecting lipoamide dehydrogenase, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities in Saccharomyces cerevisiae. Mol Gen Genet. 1986 Jul;204(1):103–107. [PubMed]
  • Faye G, Kujawa C, Fukuhara H. Physical and genetic organization of petite and grande yeast mitochondrial DNA. IV. In vivo transcription products of mitochondrial DNA and localization of 23 S ribosomal RNA in petite mutants of saccharomyces cerevisiae. J Mol Biol. 1974 Sep 5;88(1):185–203. [PubMed]
  • Forsburg SL, Guarente L. Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol Cell Biol. 1988 Feb;8(2):647–654. [PMC free article] [PubMed]
  • Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983;101:181–191. [PubMed]
  • Hahn S, Guarente L. Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science. 1988 Apr 15;240(4850):317–321. [PubMed]
  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. [PubMed]
  • Hirashima M, Hayakawa T, Koike M. Mammalian alpha-keto acid dehydrogenase complexes. II. An improved procedure for the preparation of 2-oxoglutarate dehydrogenase complex from pig heart muscle. J Biol Chem. 1967 Mar 10;242(5):902–907. [PubMed]
  • Keng T, Guarente L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9113–9117. [PubMed]
  • Kim KS, Rosenkrantz MS, Guarente L. Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol. 1986 Jun;6(6):1936–1942. [PMC free article] [PubMed]
  • Laughon A, Gesteland RF. Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6827–6831. [PubMed]
  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. [PubMed]
  • Myers AM, Crivellone MD, Koerner TJ, Tzagoloff A. Characterization of the yeast HEM2 gene and transcriptional regulation of COX5 and COR1 by heme. J Biol Chem. 1987 Dec 15;262(35):16822–16829. [PubMed]
  • Myers AM, Pape LK, Tzagoloff A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 1985 Aug;4(8):2087–2092. [PubMed]
  • Myers AM, Tzagoloff A. MSW, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem. 1985 Dec 5;260(28):15371–15377. [PubMed]
  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. [PubMed]
  • Olesen J, Hahn S, Guarente L. Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell. 1987 Dec 24;51(6):953–961. [PubMed]
  • Perlman PS, Mahler HR. Derepression of mitochondria and their enzymes in yeast: regulatory aspects. Arch Biochem Biophys. 1974 May;162(1):248–271. [PubMed]
  • Pinkham JL, Guarente L. Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Dec;5(12):3410–3416. [PMC free article] [PubMed]
  • RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. [PubMed]
  • Rickey TM, Lewin AS. Extramitochondrial citrate synthase activity in bakers' yeast. Mol Cell Biol. 1986 Feb;6(2):488–493. [PMC free article] [PubMed]
  • Ross J, Reid GA, Dawes IW. The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J Gen Microbiol. 1988 May;134(5):1131–1139. [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Roy DJ, Dawes IW. Cloning and characterization of the gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae. J Gen Microbiol. 1987 Apr;133(4):925–933. [PubMed]
  • SLATER EC, BORNER WD., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952 Oct;52(2):185–196. [PubMed]
  • Spencer ME, Guest JR. Transcription analysis of the sucAB, aceEF and lpd genes of Escherichia coli. Mol Gen Genet. 1985;200(1):145–154. [PubMed]
  • Stanley CJ, Perham RN. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method. Biochem J. 1980 Oct 1;191(1):147–154. [PubMed]
  • Stephens PE, Lewis HM, Darlison MG, Guest JR. Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12. Eur J Biochem. 1983 Oct 3;135(3):519–527. [PubMed]
  • Subík J, Kolarov J, Lachowicz TM. A mutant of Saccharomyces cerevisiae lacking alpha-ketoglutarate dehydrogenase activity. FEBS Lett. 1972 Oct 15;27(1):81–84. [PubMed]
  • Tzagoloff A, Akai A, Foury F. Assembly of the mitochondrial membrane system XVI. Modified form of the ATPase proteolipid in oligomycin-resistant mutants of Saccharomyces cerevisiae. FEBS Lett. 1976 Jun 15;65(3):391–395. [PubMed]
  • Tzagoloff A, Akai A, Needleman RB. Assembly of the mitochondrial membrane system: isolation of nuclear and cytoplasmic mutants of Saccharomyces cerevisiae with specific defects in mitochondrial functions. J Bacteriol. 1975 Jun;122(3):826–831. [PMC free article] [PubMed]
  • Jue RA, Woodbury NW, Doolittle RF. Sequence homologies among E. coli ribosomal proteins: evidence for evolutionarily related groupings and internal duplications. J Mol Evol. 1980 May;15(2):129–148. [PubMed]
  • Wu M, Tzagoloff A. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J Biol Chem. 1987 Sep 5;262(25):12275–12282. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)