PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1990 March; 10(3): 898–909.
PMCID: PMC360929

Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control.

Abstract

This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barnes WM, Bevan M, Son PH. Kilo-sequencing: creation of an ordered nest of asymmetric deletions across a large target sequence carried on phage M13. Methods Enzymol. 1983;101:98–122. [PubMed]
  • Bisson LF, Thorner J. Mutations in the pho80 gene confer permeability to 5'-mononucleotides in Saccharomyces cerevisiae. Genetics. 1982 Nov;102(3):341–359. [PubMed]
  • Borst-Pauwels GW. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. [PubMed]
  • Bowman BJ. Vanadate uptake in Neurospora crassa occurs via phosphate transport system II. J Bacteriol. 1983 Jan;153(1):286–291. [PMC free article] [PubMed]
  • Bowman BJ, Slayman CW. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1979 Apr 25;254(8):2928–2934. [PubMed]
  • Brown DJ, Gordon JA. The stimulation of pp60v-src kinase activity by vanadate in intact cells accompanies a new phosphorylation state of the enzyme. J Biol Chem. 1984 Aug 10;259(15):9580–9586. [PubMed]
  • Brugge JS, Jarosik G, Andersen J, Queral-Lustig A, Fedor-Chaiken M, Broach JR. Expression of Rous sarcoma virus transforming protein pp60v-src in Saccharomyces cerevisiae cells. Mol Cell Biol. 1987 Jun;7(6):2180–2187. [PMC free article] [PubMed]
  • Cameron S, Levin L, Zoller M, Wigler M. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell. 1988 May 20;53(4):555–566. [PubMed]
  • Cannon JF, Gibbs JB, Tatchell K. Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics. 1986 Jun;113(2):247–264. [PubMed]
  • Cantley LC, Jr, Resh MD, Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. [PubMed]
  • Carle GF, Olson MV. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. [PubMed]
  • Castellanos RM, Mazón MJ. Identification of phosphotyrosine in yeast proteins and of a protein tyrosine kinase associated with the plasma membrane. J Biol Chem. 1985 Jul 15;260(14):8240–8242. [PubMed]
  • Celenza JL, Carlson M. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):49–53. [PMC free article] [PubMed]
  • Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. [PubMed]
  • Cooper JA, Sefton BM, Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. [PubMed]
  • Dubyak GR, Kleinzeller A. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. J Biol Chem. 1980 Jun 10;255(11):5306–5312. [PubMed]
  • Dufour JP, Boutry M, Goffeau A. Plasma membrane ATPase of yeast. Comparative inhibition studies of the purified and membrane-bound enzymes. J Biol Chem. 1980 Jun 25;255(12):5735–5741. [PubMed]
  • Edelman AM, Blumenthal DK, Krebs EG. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. [PubMed]
  • Ek B, Heldin CH. Use of an antiserum against phosphotyrosine for the identification of phosphorylated components in human fibroblasts stimulated by platelet-derived growth factor. J Biol Chem. 1984 Sep 10;259(17):11145–11152. [PubMed]
  • English LH, Macara IG, Cantley LC. Vanadium stimulates the (Na+,K+) pump in friend erythroleukemia cells and blocks erythropoiesis. J Cell Biol. 1983 Oct;97(4):1299–1302. [PMC free article] [PubMed]
  • Foulkes JG, Erikson E, Erikson RL. Separation of multiple phosphotyrosyl-and phosphoseryl-protein phosphatases from chicken brain. J Biol Chem. 1983 Jan 10;258(1):431–438. [PubMed]
  • Frackelton AR, Jr, Ross AH, Eisen HN. Characterization and use of monoclonal antibodies for isolation of phosphotyrosyl proteins from retrovirus-transformed cells and growth factor-stimulated cells. Mol Cell Biol. 1983 Aug;3(8):1343–1352. [PMC free article] [PubMed]
  • Gallwitz D. Construction of a yeast actin gene intron deletion mutant that is defective in splicing and leads to the accumulation of precursor RNA in transformed yeast cells. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3493–3497. [PubMed]
  • Gould KL, Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature. 1989 Nov 2;342(6245):39–45. [PubMed]
  • Haguenauer-Tsapis R, Hinnen A. A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase. Mol Cell Biol. 1984 Dec;4(12):2668–2675. [PMC free article] [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Hunter T, Cooper JA. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897–930. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Jove R, Kornbluth S, Hanafusa H. Enzymatically inactive p60c-src mutant with altered ATP-binding site is fully phosphorylated in its carboxy-terminal regulatory region. Cell. 1987 Sep 11;50(6):937–943. [PubMed]
  • Klarlund JK. Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins. Cell. 1985 Jul;41(3):707–717. [PubMed]
  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J, Wigler M. Functional homology of mammalian and yeast RAS genes. Cell. 1985 Jan;40(1):19–26. [PubMed]
  • Kornbluth S, Jove R, Hanafusa H. Characterization of avian and viral p60src proteins expressed in yeast. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4455–4459. [PubMed]
  • Krebs EG, Beavo JA. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lindquist RN, Lynn JL, Jr, Lienhard GE. Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc. 1973 Dec 26;95(26):8762–8768. [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Lipsich LA, Lewis AJ, Brugge JS. Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J Virol. 1983 Nov;48(2):352–360. [PMC free article] [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Matsumoto K, Uno I, Ishikawa T. Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell. 1983 Feb;32(2):417–423. [PubMed]
  • Matsumoto K, Uno I, Kato K, Ishikawa T. Isolation and characterization of a phosphoprotein phosphatase-deficient mutant in yeast. Yeast. 1985 Sep;1(1):25–38. [PubMed]
  • McCusker JH, Perlin DS, Haber JE. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):4082–4088. [PMC free article] [PubMed]
  • Messing J, Crea R, Seeburg PH. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. [PMC free article] [PubMed]
  • Nechay BR. Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol. 1984;24:501–524. [PubMed]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PubMed]
  • Roon RJ, Larimore FS, Meyer GM, Kreisle RA. Characterization of a Dio-9-resistant strain of Saccharomyces cerevisiae. Arch Biochem Biophys. 1978 Jan 15;185(1):142–150. [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Schieven G, Thorner J, Martin GS. Protein-tyrosine kinase activity in Saccharomyces cerevisiae. Science. 1986 Jan 24;231(4736):390–393. [PubMed]
  • Sefton BM, Hunter T, Beemon K, Eckhart W. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell. 1980 Jul;20(3):807–816. [PubMed]
  • Serrano R, Kielland-Brandt MC, Fink GR. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. [PubMed]
  • Shih CK, Wagner R, Feinstein S, Kanik-Ennulat C, Neff N. A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers calcium-sensitive growth. Mol Cell Biol. 1988 Aug;8(8):3094–3103. [PMC free article] [PubMed]
  • Smith JB. Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6 cells. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6162–6166. [PubMed]
  • Struhl K. The yeast his3 promoter contains at least two distinct elements. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7385–7389. [PubMed]
  • Sunada H, MacLeod C, Mendelsohn J. A direct radioimmunoassay for human epidermal growth factor receptor using 32P-autophosphorylated receptor. Anal Biochem. 1985 Sep;149(2):438–447. [PubMed]
  • Swarup G, Cohen S, Garbers DL. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases. J Biol Chem. 1981 Aug 10;256(15):8197–8201. [PubMed]
  • Swarup G, Cohen S, Garbers DL. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. 1982 Aug;107(3):1104–1109. [PubMed]
  • Tanaka K, Waxman L, Goldberg AL. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation. J Biol Chem. 1984 Mar 10;259(5):2803–2809. [PubMed]
  • Tatchell K, Robinson LC, Breitenbach M. RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3785–3789. [PubMed]
  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Apr;7(4):1371–1377. [PMC free article] [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PubMed]
  • Ulaszewski S, Balzi E, Goffeau A. Genetic and molecular mapping of the pma1 mutation conferring vanadate resistance to the plasma membrane ATPase from Saccharomyces cerevisiae. Mol Gen Genet. 1987 Apr;207(1):38–46. [PubMed]
  • Ulaszewski S, Grenson M, Goffeau A. Modified plasma-membrane ATPase in mutants of Saccharomyces cerevisiae. Eur J Biochem. 1983 Feb 1;130(2):235–239. [PubMed]
  • Willsky GR, Leung JO, Offermann PV, Jr, Plotnick EK, Dosch SF. Isolation and characterization of vanadate-resistant mutants of Saccharomyces cerevisiae. J Bacteriol. 1985 Nov;164(2):611–617. [PMC free article] [PubMed]
  • Willsky GR, White DA, McCabe BC. Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem. 1984 Nov 10;259(21):13273–13281. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)