PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1991 June; 11(6): 3239–3246.
PMCID: PMC360176

Nur77 is differentially modified in PC12 cells upon membrane depolarization and growth factor treatment.

Abstract

The rat pheochromocytoma cell line PC12 can be induced by growth factors to undergo proliferation and neuronal differentiation. These cells also have excitable membranes that can be depolarized by neurotransmitters or elevated levels of extracellular KCl. Treatment of PC12 cells with growth factors or membrane-depolarizing agents rapidly activates the expression of specific genes whose products are thought to mediate the subsequent biological responses. One such gene, nur77, is a member of the steroid and thyroid hormone receptor gene superfamily. We have identified the Nur77 protein and shown that it is synthesized rapidly and transiently in PC12 cells following stimulation, has a short half-life of 30 to 40 min, and is located in both the nucleus and the cytoplasm. Nur77 is posttranslationally modified, primarily by phosphorylation on serine residues. Phosphopeptide analysis reveals that Nur77 is modified differently upon membrane depolarization than after treatment with growth factors. We hypothesize that the activity of Nur77 is regulated by both differential gene expression and posttranslational modification and that these modes of regulation contribute to distinct downstream responses specific to membrane depolarization and growth factor treatment.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bartel DP, Sheng M, Lau LF, Greenberg ME. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev. 1989 Mar;3(3):304–313. [PubMed]
  • Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. [PubMed]
  • Blenis J, Erikson RL. Regulation of protein kinase activities in PC12 pheochromocytoma cells. EMBO J. 1986 Dec 20;5(13):3441–3447. [PubMed]
  • Bohmann D, Tjian R. Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun. Cell. 1989 Nov 17;59(4):709–717. [PubMed]
  • Boonstra J, Moolenaar WH, Harrison PH, Moed P, van der Saag PT, de Laat SW. Ionic responses and growth stimulation induced by nerve growth factor and epidermal growth factor in rat pheochromocytoma (PC12) cells. J Cell Biol. 1983 Jul;97(1):92–98. [PMC free article] [PubMed]
  • Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell. 1991 Feb 8;64(3):573–584. [PubMed]
  • Cahill AL, Horwitz J, Perlman RL. Phosphorylation of tyrosine hydroxylase in protein kinase C-deficient PC12 cells. Neuroscience. 1989;30(3):811–818. [PubMed]
  • Carson-Jurica MA, Schrader WT, O'Malley BW. Steroid receptor family: structure and functions. Endocr Rev. 1990 May;11(2):201–220. [PubMed]
  • Chu G, Hayakawa H, Berg P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 1987 Feb 11;15(3):1311–1326. [PMC free article] [PubMed]
  • Curran T, Morgan JI. Barium modulates c-fos expression and post-translational modification. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8521–8524. [PubMed]
  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. [PubMed]
  • Dieckmann CL, Tzagoloff A. Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem. 1985 Feb 10;260(3):1513–1520. [PubMed]
  • Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription. Mol Cell Biol. 1989 Dec;9(12):5305–5314. [PMC free article] [PubMed]
  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. [PubMed]
  • Fahrner TJ, Carroll SL, Milbrandt J. The NGFI-B protein, an inducible member of the thyroid/steroid receptor family, is rapidly modified posttranslationally. Mol Cell Biol. 1990 Dec;10(12):6454–6459. [PMC free article] [PubMed]
  • Glineur C, Zenke M, Beug H, Ghysdael J. Phosphorylation of the v-erbA protein is required for its function as an oncogene. Genes Dev. 1990 Oct;4(10):1663–1676. [PubMed]
  • Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989 Nov 17;59(4):675–680. [PubMed]
  • Green S, Issemann I, Sheer E. A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res. 1988 Jan 11;16(1):369–369. [PMC free article] [PubMed]
  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science. 1986 Mar 7;231(4742):1150–1154. [PubMed]
  • Haycock JW. Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem. 1990 Jul 15;265(20):11682–11691. [PubMed]
  • Hazel TG, Nathans D, Lau LF. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8444–8448. [PubMed]
  • Herschman HR. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem. 1991;60:281–319. [PubMed]
  • Jackson SP, Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988 Oct 7;55(1):125–133. [PubMed]
  • Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990 Sep 21;62(6):1189–1204. [PubMed]
  • Lemaire P, Vesque C, Schmitt J, Stunnenberg H, Frank R, Charnay P. The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator. Mol Cell Biol. 1990 Jul;10(7):3456–3467. [PMC free article] [PubMed]
  • Lüscher B, Christenson E, Litchfield DW, Krebs EG, Eisenman RN. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature. 1990 Apr 5;344(6266):517–522. [PubMed]
  • Miesfeld R, Rusconi S, Godowski PJ, Maler BA, Okret S, Wikström AC, Gustafsson JA, Yamamoto KR. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell. 1986 Aug 1;46(3):389–399. [PubMed]
  • Milbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron. 1988 May;1(3):183–188. [PubMed]
  • Müller R, Bravo R, Müller D, Kurz C, Renz M. Different types of modification in c-fos and its associated protein p39: modulation of DNA binding by phosphorylation. Oncogene Res. 1987;2(1):19–32. [PubMed]
  • Mylin LM, Bhat JP, Hopper JE. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 1989 Aug;3(8):1157–1165. [PubMed]
  • Ofir R, Dwarki VJ, Rashid D, Verma IM. Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. Nature. 1990 Nov 1;348(6296):80–82. [PubMed]
  • Ramsay G, Stanton L, Schwab M, Bishop JM. Human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol Cell Biol. 1986 Dec;6(12):4450–4457. [PMC free article] [PubMed]
  • Ryseck RP, Macdonald-Bravo H, Mattéi MG, Ruppert S, Bravo R. Structure, mapping and expression of a growth factor inducible gene encoding a putative nuclear hormonal binding receptor. EMBO J. 1989 Nov;8(11):3327–3335. [PubMed]
  • Sakai DD, Helms S, Carlstedt-Duke J, Gustafsson JA, Rottman FM, Yamamoto KR. Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 1988 Sep;2(9):1144–1154. [PubMed]
  • Schüle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell. 1990 Sep 21;62(6):1217–1226. [PubMed]
  • Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. [PubMed]
  • Sheng M, McFadden G, Greenberg ME. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron. 1990 Apr;4(4):571–582. [PubMed]
  • Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. [PubMed]
  • Tanaka M, Herr W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell. 1990 Feb 9;60(3):375–386. [PubMed]
  • Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–252. [PubMed]
  • Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 1990 Sep 21;62(6):1205–1215. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)