Search tips
Search criteria 


Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1991 May; 11(5): 2489–2495.
PMCID: PMC360016

Peptide antisera to human colony-stimulating factor 1 receptor detect ligand-induced conformational changes and a binding site for phosphatidylinositol 3-kinase.


A peptide antiserum (anti-A) directed to the intracellular, juxtamembrane region (residues 552 to 574) of the human colony-stimulating factor 1 receptor (CSF-1R) precipitated only ligand-activated, native receptors from solution but bound to unstimulated forms after their denaturation. Two peptide antisera (anti-KI1 and -KI2), directed to residues 679 to 700 and 701 to 721, respectively, in the CSF-1R kinase insert (KI) domain and including mapped sites of ligand-induced phosphorylation at Tyr-699 and Tyr-708, bound at least 80% of the receptor molecules expressed in either CSF-1-stimulated or unstimulated cells. Immune complexes formed with anti-KI1, anti-A, or a peptide antiserum to the CSF-1R carboxyl terminus (anti-C-ter) coprecipitated CSF-1R complexed to a phosphatidylinositol 3-kinase (PtdIns 3-K) from CSF-1-stimulated cells, whereas anti-KI2 serum did not. In an in vitro assay, binding of CSF-1R to PtdIns 3-K required receptor tyrosine phosphorylation but not CSF-1R-mediated phosphorylation of the lipid kinase, and the association was specifically blocked by anti-KI2 or antibodies to phosphotyrosine. Neither anti-KI1, anti-A, nor anti-C-ter serum inhibited binding. We conclude that (i) only a minority of ligand-activated receptors form a stable complex with PtdIns 3-K in vivo, (ii) efficient binding of the lipid kinase requires receptor tyrosine phosphorylation within the CSF-1R KI domain, and (iii) a region within the KI domain defined by residues 701 to 721 at least partially overlaps the PtdIns 3-K binding site.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page.

Images in this article

Click on the image to see a larger version.

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)