PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1993 July; 13(7): 4011–4022.
PMCID: PMC359950

DNA-binding specificities of the GATA transcription factor family.

Abstract

Members of the GATA family of transcription factors, which are related by a high degree of amino acid sequence identity within their zinc finger DNA-binding domains, each show distinct but overlapping patterns of tissue-restricted expression. Although GATA-1, -2, and -3 have been shown to recognize a consensus sequence derived from regulatory elements in erythroid cell-specific genes, WGATAR (in which W indicates A/T and R indicates A/G), the potential for more subtle differences in the binding preferences of each factor has not been previously addressed. By employing a binding selection and polymerase chain reaction amplification scheme with randomized oligonucleotides, we have determined the binding-site specificities of bacterially expressed chicken GATA-1, -2, and -3 transcription factors. Whereas all three GATA factors bind an AGATAA erythroid consensus motif with high affinity, a second, alternative consensus DNA sequence, AGATCTTA, is also recognized well by GATA-2 and GATA-3 but only poorly by GATA-1. These studies suggest that all three GATA factors are capable of mediating transcriptional effects via a common erythroid consensus DNA-binding motif. Furthermore, GATA-2 and GATA-3, because of their distinct expression patterns and broader DNA recognition properties, may be involved in additional regulatory processes beyond those of GATA-1. The definition of an alternative GATA-2-GATA-3 consensus sequence may facilitate the identification of new target genes in the further elucidation of the roles that these transcription factors play during development.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.1M), or click on a page image below to browse page by page.

Images in this article

Click on the image to see a larger version.

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)