PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. 1993 January; 13(1): 114–122.
PMCID: PMC358891

Gene RRN4 in Saccharomyces cerevisiae encodes the A12.2 subunit of RNA polymerase I and is essential only at high temperatures.

Abstract

We have previously isolated mutants of Saccharomyces cerevisiae that are primarily defective in transcription of 35S rRNA genes by RNA polymerase I and have identified genes (RRN1 to RRN9) involved in this process. We have now cloned the RRN4 gene by complementation of the temperature-sensitive phenotype of the rrn4-1 mutant and have determined its complete nucleotide sequence. The following results demonstrate that the RRN4 gene encodes the A12.2 subunit of RNA polymerase I. First, RRN4 protein expressed in Escherichia coli reacted with a specific antiserum against A12.2. Second, amino acid sequences of three tryptic peptides obtained from A12.2 were determined, and these sequences are found in the deduced amino acid sequence of the RRN4 protein. The amino acid sequence of the RRN4 protein (A12.2) is similar to that of the RPB9 (B12.6) subunit of yeast RNA polymerase II; the similarity includes the presence of two putative zinc-binding domains. Thus, A12.2 is a homolog of B12.6. We propose to rename the RRN4 gene RPA12. Deletion of RPA12 produces cells that are heat but not cold sensitive for growth. We have found that in such null mutants growing at permissive temperatures, the cellular concentration of A190, the largest subunit of RNA polymerase I, is lower than in the wild type. In addition, the temperature-sensitive phenotype of the rpa12 null mutants can be partially suppressed by RPA190 (the gene for A190) on multicopy plasmids. These results suggest that A12.2 plays a role in the assembly of A190 into a stable polymerase I structure.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Broach JR, Strathern JN, Hicks JB. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. [PubMed]
  • Buhler JM, Sentenac A, Fromageot P. Isolation, structure, and general properties of yeast ribonucleic acid polymerase A (or I). J Biol Chem. 1974 Sep 25;249(18):5963–5970. [PubMed]
  • Dequard-Chablat M, Riva M, Carles C, Sentenac A. RPC19, the gene for a subunit common to yeast RNA polymerases A (I) and C (III). J Biol Chem. 1991 Aug 15;266(23):15300–15307. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Huet J, Sentenac A, Fromageot P. Spot-immunodetection of conserved determinants in eukaryotic RNA polymerases. Study with antibodies to yeast RNA polymerases subunits. J Biol Chem. 1982 Mar 10;257(5):2613–2618. [PubMed]
  • Iborra F, Huet J, Breant B, Sentenac A, Fromageot P. Identification of two different RNase H activities associated with yeast RNA polymerase A. J Biol Chem. 1979 Nov 10;254(21):10920–10924. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Koerner TJ, Hill JE, Myers AM, Tzagoloff A. High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods Enzymol. 1991;194:477–490. [PubMed]
  • Kolodziej P, Young RA. RNA polymerase II subunit RPB3 is an essential component of the mRNA transcription apparatus. Mol Cell Biol. 1989 Dec;9(12):5387–5394. [PMC free article] [PubMed]
  • Kolodziej PA, Young RA. Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly. Mol Cell Biol. 1991 Sep;11(9):4669–4678. [PMC free article] [PubMed]
  • Link AJ, Olson MV. Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution. Genetics. 1991 Apr;127(4):681–698. [PubMed]
  • Mann C, Buhler JM, Treich I, Sentenac A. RPC40, a unique gene for a subunit shared between yeast RNA polymerases A and C. Cell. 1987 Feb 27;48(4):627–637. [PubMed]
  • Martindale DW. A conjugation-specific gene (cnjC) from Tetrahymena encodes a protein homologous to yeast RNA polymerase subunits (RPB3, RPC40) and similar to a portion of the prokaryotic RNA polymerase alpha subunit (rpoA). Nucleic Acids Res. 1990 May 25;18(10):2953–2960. [PMC free article] [PubMed]
  • McCusker JH, Yamagishi M, Kolb JM, Nomura M. Suppressor analysis of temperature-sensitive RNA polymerase I mutations in Saccharomyces cerevisiae: suppression of mutations in a zinc-binding motif by transposed mutant genes. Mol Cell Biol. 1991 Feb;11(2):746–753. [PMC free article] [PubMed]
  • Mémet S, Gouy M, Marck C, Sentenac A, Buhler JM. RPA190, the gene coding for the largest subunit of yeast RNA polymerase A. J Biol Chem. 1988 Feb 25;263(6):2830–2839. [PubMed]
  • Nakayama N, Miyajima A, Arai K. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J. 1985 Oct;4(10):2643–2648. [PubMed]
  • Nogi Y, Vu L, Nomura M. An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7026–7030. [PubMed]
  • Nogi Y, Yano R, Nomura M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3962–3966. [PubMed]
  • Reeder RH. rRNA synthesis in the nucleolus. Trends Genet. 1990 Dec;6(12):390–395. [PubMed]
  • Riva M, Buhler JM, Sentenac A, Fromageot P, Hawthorne DC. Natural variation in yeast RNA polymerase A. Formation of a mosaic RNA polymerase A in a meiotic segregant from an interspecific hybrid. J Biol Chem. 1982 Apr 25;257(8):4570–4577. [PubMed]
  • Sentenac A. Eukaryotic RNA polymerases. CRC Crit Rev Biochem. 1985;18(1):31–90. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PubMed]
  • Sollner-Webb B, Mougey EB. News from the nucleolus: rRNA gene expression. Trends Biochem Sci. 1991 Feb;16(2):58–62. [PubMed]
  • Tabor S, Richardson CC. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. [PubMed]
  • Treich I, Carles C, Riva M, Sentenac A. RPC10 encodes a new mini subunit shared by yeast nuclear RNA polymerases. Gene Expr. 1992;2(1):31–37. [PubMed]
  • Treich I, Riva M, Sentenac A. Zinc-binding subunits of yeast RNA polymerases. J Biol Chem. 1991 Nov 15;266(32):21971–21976. [PubMed]
  • Wittekind M, Dodd J, Vu L, Kolb JM, Buhler JM, Sentenac A, Nomura M. Isolation and characterization of temperature-sensitive mutations in RPA190, the gene encoding the largest subunit of RNA polymerase I from Saccharomyces cerevisiae. Mol Cell Biol. 1988 Oct;8(10):3997–4008. [PMC free article] [PubMed]
  • Wittekind M, Kolb JM, Dodd J, Yamagishi M, Mémet S, Buhler JM, Nomura M. Conditional expression of RPA190, the gene encoding the largest subunit of yeast RNA polymerase I: effects of decreased rRNA synthesis on ribosomal protein synthesis. Mol Cell Biol. 1990 May;10(5):2049–2059. [PMC free article] [PubMed]
  • Woychik NA, Lane WS, Young RA. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J Biol Chem. 1991 Oct 5;266(28):19053–19055. [PubMed]
  • Woychik NA, Liao SM, Kolodziej PA, Young RA. Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev. 1990 Mar;4(3):313–323. [PubMed]
  • Yano R, Nomura M. Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol Cell Biol. 1991 Feb;11(2):754–764. [PMC free article] [PubMed]
  • Yura T, Ishihama A. Genetics of bacterial RNA polymerases. Annu Rev Genet. 1979;13:59–97. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)