PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmjoBMJ OpenVisit this articleSubmit a manuscriptReceive email alertsContact usBMJ
 
BMJ Open. 2012; 2(5): e001410.
Published online 2012 October 8. doi:  10.1136/bmjopen-2012-001410
PMCID: PMC3488719

TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis

Abstract

Objectives and design

We identified a novel TRIM59 gene, as an early signal transducer in two (SV40Tag and Ras) oncogene pathways in murine prostate cancer (CaP) models. We explore its clinical applications as a multitumour marker detecting early tumorigenesis by immunohistochemistry (IHC).

Setting and participants

88 CaP patients were from a tissue microarray (TMA) of radical prostatectomy specimen, 42 patients from a 35 multiple tumour TMA, 75 patients with renal cell carcinoma (RCC) and 92 patients from eight different tumour groups (breast, lung, parotid, gastrointestinal, female genital tract, bladder, kidney and prostate cancer).

Results

TRIM59 upregulation specifically in tumour area was determined by IHC in 291 cases of 37 tumour types. To demonstrate that TRIM59 upregulation is ‘tumour-specific’, we characterised a significant correlation of TRIM59 IHC signals with tumorigenesis and progression, while in control and normal area, TRIM59 IHC signal was all negative or significantly low. TRIM59 protein upregulation in prostate and kidney cancers was detectable in both intensity and extent in early tumorigenesis of prostate intraepithelial neoplasia (p<0.05) and grade 1 of RCC (p<0.05), and stopped until high grades cancer. The results of the correlation in these two large cohorts of tumour types confirmed and repeated murine CaP model studies. Enhanced TRIM59 expression was identified in most of the 37 different tumours, while the highest intensities were in lung, breast, liver, skin, tongue and mouth (squamous cell cancer) and endometrial cancers. Multiple tumour upregulation was further confirmed by comparing relative scores of TRIM59 IHC signals in eight tumours with a larger patient population; and by a mouse whole-mount embryo (14.5 days post conception) test on the origin of TRIM59 upregulation in epithelial cells.

Conclusions

TRIM59 may be used a novel multiple tumour marker for immunohistochemical detecting early tumorigenesis and could direct a novel strategy for molecular-targeted diagnosis and therapy of cancer.


Articles from BMJ Open are provided here courtesy of BMJ Group