PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcmedgenoBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Medical Genomics
 
BMC Med Genomics. 2012; 5: 18.
Published online 2012 May 29. doi:  10.1186/1755-8794-5-18
PMCID: PMC3480901

MicroRNA profiling of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line

Abstract

Background

Cancer stem cells (CSCs) are thought to be a source of tumor recurrence due to their stem cell-like properties. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has an important role in tumorigenesis. Cluster of differentiation (CD) 133+ and spheroid formation have been reported to be one of the main features of ovarian CSCs. Therefore, we determined the miRNA expression profile of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line.

Methods

Initially, we confirmed the enrichment of the OVCAR3 CD133 subpopulation by evaluating in vitro anchorage-independent growth. After obtaining a subpopulation of CD133+ OVCAR3 cells with > 98% purity via cell sorting, miRNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) were performed to evaluate its miRNA profile.

Results

We found 37 differentially expressed miRNAs in the CD133+ spheroid-forming subpopulation of OVCAR3 cells, 34 of which were significantly up-regulated, including miR-205, miR-146a, miR-200a, miR-200b, and miR-3, and 3 of which were significantly down-regulated, including miR-1202 and miR-1181.

Conclusions

Our results indicate that dysregulation of miRNA may play a role in the stem cell-like properties of ovarian CSCs.

Keywords: MicroRNA, Cancer stem cell, Ovarian cancer, CD133, OVCAR3, Chemoresistance

Articles from BMC Medical Genomics are provided here courtesy of BioMed Central