PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of ijmicrospringer.comThis journalToc AlertsSubmit OnlineOpen ChoiceThis journal
 
Indian J Microbiol. 2008 September; 48(3): 397–400.
Published online 2009 March 25. doi:  10.1007/s12088-008-0047-9
PMCID: PMC3476769

Metabolism of lysine-chromium complex in Saccharomyces cerevisiae

Abstract

Saccharomyces cerevisiae which cannot utilize lysine as a sole nitrogen source is shown to metabolize a Lysine 3 Cr3+ (1:1) complex synthesized, as a combined nitrogen and carbon source. It induces rapid uptake of lysine and prevents loss of viability, in contrast with free lysine. That complexation with trivalent chromium has the effect of profoundly influencing intracellular distribution and metabolism of the liganded amino acid is demonstrated.

Full Text

The Full Text of this article is available as a PDF (765K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Schwarz K., Mertz W. Chromium (III) and The Glucose Tolerance Factor. Arch Biochem Biophy. 1959;85:293–295.
2. Toepfer E.W., Mertz W., Polansky M.M., Roginski E.R., Wolf W.R. Preparation of Chromium Containing Material of GTF activity from Brewer’s Yeast Extracts and by Synthesis. J Agr Food Chem. 1977;25:162–166. doi: 10.1021/jf60209a056. [PubMed] [Cross Ref]
3. Doisy R.J., Streeten D.H.P., Freeburg J.M., Schneider A.J. Nutrition Foundation Monograph. New York: Academic Press; 1976. Chromium metabolism in man and trace elements in human health and disease; p. 79.
4. Zetic V.G., Vasne S.T., Grba S., Lavoslav L., Kozlek D. Chromium uptake by Saccharomyces cerevisiae and isolation of Glucose Tolerance Factor from Yeast Biomass. J Biosci. 2001;26:217–223. doi: 10.1007/BF02703645. [PubMed] [Cross Ref]
5. Vinson J.A., Bose P. The effect of a high chromium yeast on the blood glucose control and blood lipids of normal and diabetic human subjects. Nutr Reports International. 1984;4:30–35.
6. Beran M., Stahl R., Beran N. Glyceamic activity of Cr (III)-β-nicotinamide Adenine Dinucleotide Phosphate Complex and its presence in yeast extracts. Analyst. 1995;120:979–981. doi: 10.1039/an9952000979. [PubMed] [Cross Ref]
7. Yang X., Palenichamy K., Ontko A.C., Rao M.N.A., Fang C.X., Ren J., Sreejayan N. A newly synthetic chromium complex-Cr(Phe)3 improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Lrs. 2005;579:1458–1464. doi: 10.1016/j.febslet.2005.01.049. [Cross Ref]
8. Hampsey M. A review of phenotypes in Saccharomyces cerevisiae. Yeast. 1997;13:1099–1133. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1099::AID-YEA177>3.0.CO;2-7. [PubMed] [Cross Ref]
9. Watson T.G. Amino acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino acid nitrogen source. J Gen Microbiol. 1976;96:263–268. [PubMed]
10. Thomas K.C., Ingledew W.M. Relationship of low lysine and arginine concentration to efficient ethanolic fermentation of wheat mash. Can J Microbiol. 1992;38:626–634. doi: 10.1139/m92-103. [PubMed] [Cross Ref]
11. Shuttleworth S.G., Sykes R.L. The mode of coordination of amino acids with cationic chromium in acid aqueous solutions. I. Spectrophotometric studies. J Am Leather Chem Assoc. 1959;54:259–268.
12. Li N.C., Doody E. Polarographic and Potentiometric Studies on complex formation between Copper and Amino acid Ions. J Am Chem Soc. 1952;74:1891–1894. doi: 10.1021/ja01128a006. [Cross Ref]
13. Uma V., Polasa H. Rapid production of ethanol by newly isolated Saccharomyces cerevisiae of Palm Wine. J Microbiol Biotechnol. 1988;3:70–74.
14. Vogel H.I., Shimura Y. Lysine estimation by a specific ninhydrin procedure Methods Enzymol. New York: Acad. Press; 1971. pp. 228–229.
15. Feigel F. Spot tests in Inorganic analysis. New York: Elseveir publications; 1958. p. 179.
16. Ohsumi Y., Kitamoto K., Anraku Y. Changes induced in the permeability barrier of the yeast plasma membrane by the cupric ion. J Bact. 1988;170:2676–2682. [PMC free article] [PubMed]
17. Ducros V. Chromium metabolism. Biol Trace Elem Res. 1992;32:65–77. doi: 10.1007/BF02784589. [PubMed] [Cross Ref]
18. Albers E., Larsson C., Liden G., Niklasson C., Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl and Environ Microbiol. 1996;62:3187–3195. [PMC free article] [PubMed]
19. Bode R., Thuran A.M., Sehmidt Characterization of acetyl-CoA: L-Lysine N [6]-acetyl transferase which catalyzes the first step of carbon catabolism from lysine in Saccharomyces cerevisiae. Arch Microbiol. 1993;160:397–400. doi: 10.1007/BF00252227. [PubMed] [Cross Ref]
20. Venkataramana V., Sivarama Sastry K. Chromium uric acid complexes as growth substrates and inducers of uricase in Neurospora crassa. J Inorg Biochem. 1993;50:107–117. doi: 10.1016/0162-0134(93)80018-5. [Cross Ref]
21. Messenguy F., Colin D., Ten Have J.P. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. 1980;108:439–447.
22. Granot D., Snyder M. Carbon sources induce growth of stationary phase yeast cells, independent of carbon source metabolism. Yeast. 1993;9:465–479. doi: 10.1002/yea.320090503. [PubMed] [Cross Ref]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer