PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of cytotechspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
Cytotechnology. Mar 2006; 50(1-3): 35–48.
Published online Jun 23, 2006. doi:  10.1007/s10616-005-3974-x
PMCID: PMC3475999
On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance
John P. Carvellcorresponding author1 and Jason E. Dowd2
1Aber Instruments Ltd., Science Park, Aberyswyth, UK
2JEHD Consulting, Vancouver, BC Canada
John P. Carvell, Fax: +44-1970615455, jc/at/aber-instruments.co.uk.
corresponding authorCorresponding author.
Received October 7, 2005; Accepted October 7, 2005.
In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform.
Key words: Radio-frequency impedance, Capacitance, Cell culture, CHO, cGMP, On-line biomass monitoring, Perfusion culture
  • Asami K., Yonezawa T., Wakamatsu H., Koyanagi N. Dielectric spectroscopy of biological cells. Biochem. Bioener. 1996;40:141–145. doi: 10.1016/0302-4598(96)05067-2. [Cross Ref]
  • Barer M.R., Kaprelyants A.S., Weichart D.H., Harwood C.R., Kell D.B. Microbial stress and culturability: conceptual and operational domains. Microbiology UK. 1998;144:2009–2010. doi: 10.1099/00221287-144-8-2009. [Cross Ref]
  • Belving H., Ericksson L.E.G., Davey C.L., Kell D.B. Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 1994;23:207–215. doi: 10.1007/BF01007612. [PubMed] [Cross Ref]
  • Carvell J.P. 2003. Monitoring live cell concentration in real time. Bioprocess Int.: 2–7.
  • Cerkel I., Garcia A., Degouys V., Dubois D., Fabry L., Miller A.O.A. Dielectric-spectroscopy of mammalian cells: evaluation of the biomass of Hela-Cell and CHO-cells in suspension by low frequency dielectric spectroscopy. Cytotechnology. 1993;13:185–193. doi: 10.1007/BF00749814. [PubMed] [Cross Ref]
  • Clegg J.S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 1984;246:R133–R151. [PubMed]
  • Davey C.L. and Kell D.B. 1995. The low-frequency dielectric properties of biological cells. In: Bioelectrochemistry: Principles and PracticeVol. 2. Bioelectrochem’of Cells and Tissues. pp. 159–207.
  • Davey C.L., Davey H.M., Kell D.B., Todd R.W. Introduction to the dielectric estimation of cellular biomass in real timewith special emphasis on measurements at high volume fractions. Anal. Chim. Acta. 1993a;279:155–161. doi: 10.1016/0003-2670(93)85078-X. [Cross Ref]
  • Davey C.L., Markx G.H., Kell D.B. On the dielectric method of measuring cellular viability. Pure Appl. Chem. 1993b;65:1921–1926. doi: 10.1351/pac199365091921. [Cross Ref]
  • Davey C.L., Guan Y., Kemp R.B. Real time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. Animal Cell Technol.: Basic Appl. Aspects. 1997a;8:61–65.
  • Davey C.L., Guan Y., Kemp R.B., Kell D.B. Real-time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. In: Funatsu K., Shirai Y., Matsushita T., editors. Animal Cell Technology: Basic and Applied Aspects, Vol. 8. Dordrecht: Kluwer; 1997b. pp. 61–65.
  • Degouys V., Cerkel I., Garcia A., Harfield J., Dubois D., Fabry L., Miller A.O.A. Dielectric spectroscopy of mammalian cells: 2, simultaneous in situ evaluation by aperture impedance pulse spectroscopy and low-frequency dielectric spectroscopy of the biomass of HTC cells on Cytodex 3. Cytotechnology. 1993;13:195–202. doi: 10.1007/BF00749815. [PubMed] [Cross Ref]
  • Dowd J.E., Jubb A., Kwok E.K., Piret J.M. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology. 2003;42:35–45. doi: 10.1023/A:1026192228471. [PMC free article] [PubMed] [Cross Ref]
  • Dowd J.E., Carvell J.P. Improved control of cGMP fermentations and cell culture. Genet. Engineer. News. 2005;25(11):64–68.
  • Ducommun P., Kadori A., Von Stockar U., Marison I. On-line determination of animal cell concentration in two industrial high density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 2002a;77:316–323. doi: 10.1002/bit.1197. [PubMed] [Cross Ref]
  • Ducommun P., Ruffieux P.A., Kadouri A., Stockar U., Marison Monitoring temperature effects on cell metabolism in a packed bed process. Biotechnol. Bioeng. 2002b;77:838–842. doi: 10.1002/bit.10185. [PubMed] [Cross Ref]
  • Elias C.B., Zeiser A., Bedard C., Kamen A.A. Enhanced growth of Sf-9 cells to a maximum density of 5.2×107 cells per ml and production of B-Galactosidase at high cell density by fed batch culture. Biotechnol. Bioeng. 2000;68:381–388. doi: 10.1002/(SICI)1097-0290(20000520)68:4<381::AID-BIT3>3.0.CO;2-D. [PubMed] [Cross Ref]
  • Elias C.B., Zeiser A., Kamen A.A. Advances in high cell density culture technology using the Sf-9 insect cell baculovirus expression system — the fed batch approach. Bioprocess J. 2003;2(1):22–29.
  • Ferreira A.P., Vieira L.M., Cordoso J.P., Menzes J.C. Evaluation of a new capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 2005;116:403–409. doi: 10.1016/j.jbiotec.2004.12.006. [PubMed] [Cross Ref]
  • Foster K.R., Schwan H.P. Dielectric properties of tissues. In: Polk C., Postow E., editors. CRC Handbook of Biological Effects of Electromagnetuic Fields. Boca Raton, FL: CRC Press; 1986.
  • Foster K.R., Schwan H.P. Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering. 1989;17:25–104. [PubMed]
  • Guan Y., Kemp R. The viable cell monitor: a dielectric spectroscope for growth and metabolic studies of animal cells on macroporous beads. In: Merten O.-W., Perrin P., Griffiths B., editors. New Developments and New Applications in Animal Cell Technology. Dordrecht/NL: Springer Netherlands; 1997. pp. 321–328.
  • Guan Y., Evans P.M., Kemp R.B. An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol. Bioeng. 1998;58:463–477. doi: 10.1002/(SICI)1097-0290(19980605)58:5<464::AID-BIT2>3.0.CO;2-B. [PubMed] [Cross Ref]
  • Harris C.M., Todd R.W., Bungard S.H., Lovitt R.W., Morris J.G., Kell D.B. The dielectric permietivity of microbial suspensions at radio frequencies: a novel method for the estimation of microbial biomass. Enzyme Microb. Technol. 1987;9:181–186. doi: 10.1016/0141-0229(87)90075-5. [Cross Ref]
  • Kell D.B., Todd R.W. Dielectric estimation of microbial biomass using the Aber Instruments Biomass Monitor. TIBTECH. 1998;16:149–150.
  • Kell D.B., Markx G.H., Davey C.L., Todd R.W. Real time monitoring of cellular biomass: methods and applications. Trends Anal. Chem. 1990;9:190–194. doi: 10.1016/0165-9936(90)87042-K. [Cross Ref]
  • Kell D.B., Kaprelyants A.S., Weichart D.H., Harwood C.L., Baxter M.R. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek. 1998;73:169–187. doi: 10.1023/A:1000664013047. [PubMed] [Cross Ref]
  • Konstantinov K.B., Pambayun R., Matanguihan R., Yoshida T., Perusich C.M., Hu W.S. On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioeng. 1992;40:1337–1342. doi: 10.1002/bit.260401107. [PubMed] [Cross Ref]
  • Konstantinov K., Chuppa S., Saja E., Tsal Y., Yoons, Golini F. Real time biomass concentration monitoring in animal cell cultures. TIBTECH. 1994;12:324–333. [PubMed]
  • Merten O.-W., Palfi G.E., Stäheli J., Steiner J. Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas. Dev. Biol. Standard. 1987;66:357–360. [PubMed]
  • Noll T., Biselli M. Dielectric spectroscopy in the cultivation of suspended and immobilised hybridoma cells. J. Biotechnol. 1998;63:187–198. doi: 10.1016/S0168-1656(98)00080-7. [PubMed] [Cross Ref]
  • Pethig R. Dielectric and Electronic Properties of Biological Materials. Chichester: Wiley; 1979.
  • Pethig R., Kell D.B. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 1987;32:933–970. doi: 10.1088/0031-9155/32/8/001. [PubMed] [Cross Ref]
  • Schmid G., Zacher D. Evaluation of a novel capacitance probe for on-line monitoring of viable cell densities in batch and fed-bach animal cell culture processes. In: Godia F., Fussenegger M., editors. Animal Cell Technology Meets Genomics. Dordrecht/NL: Springer; 2004. pp. 621–624.
  • Siano S.A. Biomass measurement by inductive permeattivity. Biotechnol. Bioeng. 1997;55:289–304. doi: 10.1002/(SICI)1097-0290(19970720)55:2<289::AID-BIT7>3.0.CO;2-E. [PubMed] [Cross Ref]
  • Stoicheva N.G., Davey C.L., Markx G.H., Kell D.B. Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocatalysis. 1989;2:5–22. doi: 10.3109/10242428908992034. [Cross Ref]
  • Takashima S., Asami K., Takahashi Y. Frequency domain studies of impedance characteristics of biological cells using micropippette technique. 1. Erythrocyte. Biophys. J. 1988;54:995–1000. doi: 10.1016/S0006-3495(88)83037-6. [PubMed] [Cross Ref]
  • Vits H., Hu W.S. Fluctuations in continuous mammalian cell bioreactors with retention. Biotechnol. Progr. 1992;8:397–403. doi: 10.1021/bp00017a004. [PubMed] [Cross Ref]
  • Wu P., Ozturk S., Blackie J.D., Thrift J.C., Figueroa C., Naveh D. Evaluation and applications of optical density probes in mammalian cell bioreactors. Biotechnol. Bioeng. 1995;45:495–502. doi: 10.1002/bit.260450606. [PubMed] [Cross Ref]
  • Zeiser A., Bedard C., Voyer R., Jardin B., Tom R., Karmen A.A., Karmen T. On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol. Bioeng. 1999;63:122–126. doi: 10.1002/(SICI)1097-0290(19990405)63:1<122::AID-BIT13>3.0.CO;2-I. [PubMed] [Cross Ref]
  • Zeiser A., Voyer R., Jardin B., Kamen A. On-line monitoring physiological parameters of insect cell cultures during growth and infection process. Biotechnol. Progr. 2000;16:803–808. doi: 10.1021/bp000092w. [PubMed] [Cross Ref]
  • Zho W., Hu W.S. On-line characterisation of a hybridoma cell culture process. Biotechnol. Bioeng. 1994;44:170–177. doi: 10.1002/bit.260440205. [PubMed] [Cross Ref]
Articles from Cytotechnology are provided here courtesy of
Springer Science+Business Media B.V.