Search tips
Search criteria 


Logo of nanoreslettspringer open web sitethis articlemanuscript submissionregistrationjournal front pagespringer open web site
Nanoscale Res Lett. 2012; 7(1): 310.
Published online 2012 June 18. doi:  10.1186/1556-276X-7-310
PMCID: PMC3475107

Ion-sensing properties of 1D vanadium pentoxide nanostructures


The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

Keywords: Vanadium pentoxide, Nanostructures, pH sensors, SEGFET, Hydrothermal synthesis


Proton donor-acceptor property (amphoterism) is characteristic of several metal oxides or nitrides. These properties have enabled the development of numerous devices to measure ion activities in chemical environments, including ion-sensitive field-effect transistors (ISFET) [1], capacitive electrolyte-insulator-semiconductors [2], light-addressable potentiometric sensors [3], and separative extended gate field-effect transistors (SEGFET) [4]. All these devices are based on field effect and the surface potential of gate insulator material that changes according to the ion concentration in the solution, controlling the output signal. ISFET is the most common type of field-effect device used in pH sensors and biosensors because it can be miniaturized and manufactured on a large scale. However, in ISFET sensors, the FET is in direct contact with the solution, which can hinder the measurement and immobilization of biomolecules due to their small dimensions. As an alternative, a SEGFET [4] or, in a simple way, a sensitive layer connected to the input pin of a high-impedance buffer, such as an operational amplifier [5,6], can be utilized. In both cases, the transduction principle (field effect) is the same. Besides the reuse of the FET in new measurements, the robustness and flexibility of the extended sensitive layer facilitate the processing of new materials to be implemented as ion sensors.

Since the technology of field-effect devices is mature, research has focused on the synthesis of new materials to be applied as ion sensitive membranes. Several metal oxides or nitrides that have been used as pH sensitive membranes have presented the expected response [7-10]. In fact, nanoscale metal oxides can improve the fundamental properties of materials and the performance of devices due to new physical and chemical properties. Recently, one-dimensional (1D) nanostructured materials such as nanowires, nanoribbons and nanotubes have attracted much interest due to their improved properties when compared to similar isotropic nanostructures [11-13].

Vanadium pentoxide (V2O5), which possesses particularly interesting physical and chemical properties, has been employed in technological applications as catalytic material [14], in electrochromic devices [15], as battery cathode material [16], and in sensors [17-19]. Several strategies have been developed to obtain 1D V2O5 nanostructures. For example, Avansi et al. recently reported an environmentally correct, one-step hydrothermal route for the synthesis of V2O5·nH2O nanostructures with controlled morphology and crystalline structure [20].

Combining SEGFET devices and V2O5·nH2O nanostructures, field-effect sensors can be constructed in a simple and low-cost way. In this context of technological applications, we report on the use of 1D V2O5·nH2O nanostructures obtained by a hydrothermal method as pH sensitive membranes in a SEGFET device, which was constructed based on van der Spiegel’s concept [5].


The V2O5·nH2O nanostructures were synthesized by a hydrothermal method which is described in detail elsewhere [20]. Briefly, this procedure involves dissolving V2O5 micrometric powder (Alfa Aesar, Ward Hill, MA, USA; 99.995% purity) in deionized water, adding hydrogen peroxide (H2O2), and treating the mixture hydrothermally. Different V2O5·nH2O 1D nanostructures were obtained by applying the hydrothermal treatment at different temperatures in the same time of synthesis (24 h) [20].

The crystalline phase of the as-obtained samples was investigated by X-ray diffraction (XRD) using a Shimadzu XRD 6000 diffractometer (Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan) with Cu (λ = 1.5406) radiation. The size and morphology of the as-obtained samples were determined using a Zeiss VP Supra 35 field emission scanning transmission electron microscope (FE-STEM; Carl Zeiss AG, Oberkochen, Germany).

The as-obtained samples were deposited onto Au-coated substrates by spin coating and connected to the input pin of a LF356 JFET operational amplifier, used here as a unity gain buffer. A silver/silver chloride (Ag/AgCl) reference electrode was used to keep the voltage constant. Figure Figure11 shows a schematic diagram of the SEGFET.

Figure 1
Schematic diagram of the SEGFET configuration. The electronic diagram of LF356 operational amplifier is shown.

Results and discussion

The diffractograms in Figure Figure22 confirm the expected crystalline phase in all the samples under study, i.e., monoclinic phase in the samples synthesized at 160°C and orthorhombic phase in those synthesized at 180°C and 200°C [20].

Figure 2
XRD diffractograms of the samples synthesized by the hydrothermal route. (a) Nanoribbon at 160°C, (b) nanowire at 180°C and (c) nanorod at 200°C.

The bright field scanning transmission electron microscopy (STEM) images shown in Figure Figure33 confirm the morphology of the resulting nanostructures. As expected, different nanostructures were obtained. The samples synthesized at 160°C show a nanoribbon-like morphology (Figure (Figure3a),3a), while samples synthesized at 180°C and 200°C present, respectively, nanowire-like (Figure (Figure3b)3b) and nanorod-like (Figure (Figure3c)3c) morphologies [20].

Figure 3
FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.

SEGFET devices have been used as an alternative to conventional ISFET to isolate FET from analytical chemical environments and have presented the same operational characteristics [4,6,9,18]. The robustness and flexibility of the gate in SEGFET devices allow for the combination and testing of new materials that can sense pH easily. In addition, the commercial high-input impedance device (FET part) in SEGFET sensors can be reused, since only the extended gate membrane has to be built [4,6,9,18].

The 1D V2O5·nH2O nanostructures deposited on Au-coated substrates were immersed in buffer solutions with different pH (pH from 2 to 12), and the output voltage of the operational amplifier was recorded over time. Figure Figure4a4a shows the dynamic response of all 1D V2O5·nH2O nanostructures to pH variations. Despite the structural changes due to the conditions of hydrothermal synthesis, the V2O5·nH2O synthesized at 160°C (in nanoribbon form with monoclinic phase) and at 180°C (in nanowire form with orthorhombic phase) yielded similar results. The pH sensitivity of the 1D V2O5·nH2O nanostructures was determined based on the output voltage at 3 min. Within the limits of experimental error, the sensitivity did not change in any of the V2O5·nH2O morphologies, indicating that the pH sensitivity is independent of the phase or nanostructure, as indicated in the inset in Figure Figure44b.

Figure 4
Dynamic response of all 1D V2O5·nH2O nanostructures to pH variations. (a) Typical dynamic response of 1D V2O5·nH2O nanostructured sensing membranes to variations in pH and (b) pH sensitivity calculated at 3 min. Inset: pH sensitivity of ...

The mechanism of pH sensitivity is due to the amphoteric properties of the majority of metal oxides and can be explained by the well-known site-binding model [21,22]. According to this model, the surface of V2O5·nH2O nanostructures contains three sites, i.e., negatively charged groups, neutral groups and positively charged groups. The total surface charge can be altered by the formation of metal complexes on the surface of V2O5·nH2O nanostructures according to the following equation [21,22]:

ψ=2,3kTqββ+1(pHpzc- pH)

where pHpzc is the pH value at the point of zero charge, q is the elementary charge, k is the Boltzmann constant, T is the absolute temperature, and β is a factor that reflects the chemical sensitivity of the gate material. Modifications in the pH of the electrolyte cause changes in the concentration of protons, allowing for control of the output signal of SEGFET devices. The site-binding model is consistent with the experimental results, indicating that the value of β is the same for any V2O5·nH2O morphologies.

The pH sensitivity of 1D V2O5·nH2O nanostructures is consistent with the theoretical Nernstian value expected for pH-sensitive materials (59.2 mV.pH^−1) and in excellent agreement with values reported for other metal oxide pH-sensing membranes [6-10]. In addition, due to this property, 1D V2O5·nH2O nanostructures can be applied as field-effect based biosensors, since the biomolecule-catalyzed reaction changes the ion concentration in solution, as suggested in the literature [23].


In summary, we have reported the results of an investigation of vanadium pentoxide nanostructures as sensitive material in SEGFET pH sensors. The use of the hydrothermal route combined with FET-based sensors yielded nanometric pH-sensitive materials. 1D V2O5·nH2O nanostructures showed pH sensitivity close to the theoretical value. Despite the influence of the synthesis temperature on the morphological and structural properties of the material, its pH sensitivity remained unaffected, as expected. Our strategy shows potential advantages for the construction of low-cost pH sensing membranes with promising applications in field effect-based biosensors.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NCSV conceived the study, contributed with its design and coordination, and drafted the manuscript. WA, CR and VRM synthesized all vanadium pentoxide nanostructures, and they were responsible for its characterization. AF made the films and helped the experiments related to the pH sensor. FEGG gave advice and guided the experiments. All authors read and approved the final manuscript.


The authors acknowledge CAPES, CNPq and FAPESP for their financial support of this research.


  • Bergveld P. Thirty years of ISFETOLOGY - what happened in the past 30 years and what may happen in the next 30 years. Sensor Actuat B-Chem. 2003;88:1–20. doi: 10.1016/S0925-4005(02)00301-5. [Cross Ref]
  • Spelthahn H, Schaffrath S, Coppe T, Rufi F, Schöning MJ. Development of an electrolyte–insulator–semiconductor (EIS) based capacitive heavy metal sensor for the detection of Pb2+ and Cd2+ ions. physica status solidi (a) 2010;207:930–934. doi: 10.1002/pssa.200983306. [Cross Ref]
  • Siqueira JR, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON, Schöning MJ. Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices. physica status solidi (a) 2010;207:781–786. doi: 10.1002/pssa.200983301. [Cross Ref]
  • Fernandes EGR, Vieira NCS, de Queiroz AAA, Guimarães FEG, Zucolotto V. Immobilization of poly(propylene imine) dendrimer/nickel phtalocyanine as nanostructured multilayer films to be used as gate membranes for SEGFET pH sensors. J Phys Chem C. 2010;114:6478–6483. doi: 10.1021/jp9106052. [Cross Ref]
  • van der Spiegel J, Lauks I, Chan P, Babic D. The extended gate chemically sensitive field-effect transistor as multi-species microprobe. Sensors and Actuators. 1983;4:291–298.
  • Chi LL, Chou JC, Chung WY, Sun TP, Hsiung SK. Study on extended gate field effect transistor with tin oxide sensing membrane. Mater Chem Phys. 2000;63:19–23. doi: 10.1016/S0254-0584(99)00184-4. [Cross Ref]
  • Lin JL, Chu YM, Hsaio SH, Chin YL, Sun TP. Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors. Jpn J Appl Phys. 1 2006;45:7999–8004.
  • Buniatyan VV, Abouzar MH, Martirosyan NW, Schubert J, Gevorgian S, Schoning MJ, Poghossian A. pH-sensitive properties of barium strontium titanate (BST) thin films prepared by pulsed laser deposition technique. Phys Status Solidi A-Appl Mat. 2010;207:824–830. doi: 10.1002/pssa.200983310. [Cross Ref]
  • Batista P, Mulato M. Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor. J Mater Sci. 2010;45:5478–5481. doi: 10.1007/s10853-010-4603-4. [Cross Ref]
  • Liao YH, Chou JC. Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors. Sensors. 2009;9:2478–2490. doi: 10.3390/s90402478. [PMC free article] [PubMed] [Cross Ref]
  • Wang X, Li YD. Solution-based synthetic strategies for 1-D nanostructures. Inorg Chem. 2006;45:7522–7534. doi: 10.1021/ic051885o. [PubMed] [Cross Ref]
  • Cademartiri L, Ozin GA. Ultrathin nanowires - a materials chemistry perspective. Adv Mater. 2009;21:1013–1020. doi: 10.1002/adma.200801836. [Cross Ref]
  • Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci. 2010;55:563–627. doi: 10.1016/j.pmatsci.2010.02.001. [Cross Ref]
  • Karunakaran C, Senthilvelan S. Vanadia-catalyzed solar photooxidation of aniline. J Colloid Interface Sci. 2005;289:466–471. doi: 10.1016/j.jcis.2005.03.071. [PubMed] [Cross Ref]
  • Wang Z, Chen J, Hu X. Electrochromic properties of aqueous sol–gel derived vanadium oxide films with different thickness. Thin Solid Films. 2000;375:238–241. doi: 10.1016/S0040-6090(00)01335-3. [Cross Ref]
  • Wang Y, Cao G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater. 2008;20:2251–2269. doi: 10.1002/adma.200702242. [Cross Ref]
  • Liu J, Wang X, Peng Q, Li Y. Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater. 2005;17:764–767. doi: 10.1002/adma.200400993. [Cross Ref]
  • Guerra EM, Silva GR, Mulato M. Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method. Solid State Sci. 2009;11:456–460. doi: 10.1016/j.solidstatesciences.2008.07.014. [Cross Ref]
  • Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y. Single β-AgVO3 nanowire H2S sensor. Nano Letters. 2010;10:2604–2608. doi: 10.1021/nl1013184. [PubMed] [Cross Ref]
  • Avansi W, Ribeiro C, Leite ER, Mastelaro VR. Vanadium pentoxide nanostructures: an effective control of morphology and crystal structure in hydrothermal conditions. Crystal Growth & Design. 2009;9:3626–3631. doi: 10.1021/cg900373f. [Cross Ref]
  • Yates DE, Levine S, Healy TW. Site-binding model of electrical double-layer at oxide-water interface. Journal of the Chemical Society-Faraday Transactions I. 1974;70:1807–1818.
  • Fung CD, Cheung PW, Ko WH. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. Electron Devices, IEEE Transactions on. 1986;33:8–18.
  • Schoning MJ, Poghossian A. Recent advances in biologically sensitive field-effect transistors (BioFETs) Analyst. 2002;127:1137–1151. doi: 10.1039/b204444g. [PubMed] [Cross Ref]

Articles from Nanoscale Research Letters are provided here courtesy of Springer