PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 October 1; 68(Pt 10): o3039.
Published online 2012 September 29. doi:  10.1107/S1600536812040263
PMCID: PMC3470391

1-Benzyl­piperidin-4-one O-(2-bromo­benz­yl)oxime

Abstract

In the title mol­ecule, C19H21BrN2O, the piperidone ring adopts a chair conformation with a total puckering amplitude Q T of 0.554 (2) Å. The dihedral angle between the benzene rings is 64.10 (7)°. There are no significant inter­molecular inter­actions.

Related literature  

For the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006 [triangle]). For properties of the oxime function, see: Parthiban et al. (2011 [triangle]); Jayabharathi et al. (2011 [triangle]); Picard et al. (2000 [triangle]); For related structures, see: Parthiban et al. (2009 [triangle]); For details of ring-puckering conformational analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o3039-scheme1.jpg

Experimental  

Crystal data  

  • C19H21BrN2O
  • M r = 373.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o3039-efi1.jpg
  • a = 21.1586 (5) Å
  • b = 5.6731 (2) Å
  • c = 14.6425 (4) Å
  • β = 103.037 (3)°
  • V = 1712.31 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.41 mm−1
  • T = 123 K
  • 0.40 × 0.12 × 0.05 mm

Data collection  

  • Oxford Diffraction Xcalibur E diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.448, T max = 1.000
  • 9090 measured reflections
  • 4525 independent reflections
  • 3556 reflections with I > 2σ(I)
  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.078
  • S = 1.03
  • 4525 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040263/gg2101sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040263/gg2101Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812040263/gg2101Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and AL thanks Pontificia Universidad Javeriana, Colombia, for partial financial support.

supplementary crystallographic information

Comment

The oxime function is a versatile intermediate in organic synthesis, for example, it can be readily transformed into important groups such as carbonyl, amino, nitro, cyano and can be used as a convenient protective group (Mikhaleva et al., 2006). The oxime function is also an important pharmacophore group, particularly oximes of the piperidone and their ethers possess a wide spectrum of biological activity such as cytotoxic (Parthiban et al., 2011), antimicrobial (Jayabharathi et al., 2011) and as an inhibitor of steroid-5-reductase (Picard et al., 2000). In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as oximes and isoxazoles. In order to accomplish this objective the 1-benzylpiperidin-4-one O-2-bromobenzyl oxime (I) was synthesized with the aim of evaluating its in vitro antimicrobial activity. The molecular structure of I is shown in Fig. 1. A single crystal XRD study has been carried out for (I) to confirm the sterochemistry stablished by NMR studies. Analisis of torsion angles, and least-square plane calculation, indicate that piperidone ring adopts a chair conformation with the smallest displacement parameters q2= 0.078 (2) and q3= 0.549 (2) Å, total puckering amplitude, QT= 0.554 (2) Å and [var phi]2= -176 (2)° (Cremer & Pople, 1975). This conformational behavior is similar to that reported by other similar systems (Parthiban et al., 2009). The least-squares fit of two phenyl rings C2/C3/C4/C5/C6/C7 and C14/C15/C16/C17/C18/C19 with a r.m.s deviation of fitted atoms of 0.0.009 and 0.004 Å respectively, shows a dihedral angle of 64.10 (7)° between the rings. The crystal packing shows no classical hydrogen bonds.

Experimental

In a two necks round bottom flask a mixture of 1-benzylpiperidin-4-one oxime (204 mg, 1 mmol), NaOH (80 mg, 2 mmol) in dry acetone (1.5 ml) was refluxed for 30 minutes, and then 2-bromobenzyl bromide (275 mg, 1,1 mmol) was added and subsequently stirred for 3 h. The reaction mixture was neutralized with acetic acid, extracted with AcOEt and dried with anhydrous Na2SO4. The combined organic layers were evaporated under low pressure to dryness. Purification of the crude mixture by flash column chromatography with 15% (v/v) AcOEt/hexane yielded compound 1 as a pale yellow solid (250 mg, 67% yield) mp 340.5 - 342.0 K. 1-benzylpiperidin-4-oneO-2-bromobenzyl oxime 1H NMR (300 MHz) δ, 7.56 (dd, 1H, Ar—H), 7.43–7.27 (m, 7H, Ar—H), 7.17 (td, 1H, Ar—H), 5.16 (s, 2H, O—CH2—Ar) 3.58 (s, 2H, N—CH2—Ph), 2.73 (t, 2H, N=C—CH2), 2.59 (t, 2H, N—CH2), 2.56 (t, 2H, N—CH2), 2.39 (t, 2H, N=C—CH2). 13C-NMR δ, 158.3 (C=N), 138.0 (C), 137.5(C), 132.5 (Ar—H), 129.2, 129.1, 128.9, 128.3, 127.2, 122.7 (C—Br), 74.5 (O—CH2—Ar), 62.5 (N—CH2—Ar), 53.5 (N—CH2), 52.4 (N—CH2), 31.4 (N=C—CH2), 25.5 (N=C—CH2). MS—EI M+ m/z: 372.1, 374.1, 100%: 91.1.

Refinement

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H = 0.99 Å for methylene, and with Uiso(H) (1.2 and 1.5 x Ueq of the parent atom respectively].

Figures

Fig. 1.
An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Crystal data

C19H21BrN2OF(000) = 768
Mr = 373.29Dx = 1.448 Mg m3
Monoclinic, P21/cMelting point: 341(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.1586 (5) ÅCell parameters from 4022 reflections
b = 5.6731 (2) Åθ = 3.2–30.0°
c = 14.6425 (4) ŵ = 2.41 mm1
β = 103.037 (3)°T = 123 K
V = 1712.31 (9) Å3Cut from large needle, colourless
Z = 40.40 × 0.12 × 0.05 mm

Data collection

Oxford Diffraction Xcalibur E diffractometer4525 independent reflections
Radiation source: fine-focus sealed tube3556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)h = −29→28
Tmin = 0.448, Tmax = 1.000k = −7→7
9090 measured reflectionsl = −20→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0294P)2 + 0.3261P] where P = (Fo2 + 2Fc2)/3
4525 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.089592 (10)0.38045 (4)0.610086 (15)0.02227 (8)
O10.19320 (7)0.9868 (3)0.78376 (10)0.0186 (3)
N10.25028 (8)0.8872 (3)0.84339 (13)0.0182 (4)
N20.31211 (8)1.2442 (3)1.08828 (12)0.0178 (4)
C10.15948 (10)0.8022 (4)0.72769 (15)0.0185 (5)
H1A0.19120.70230.70520.022*
H1B0.12990.87160.67210.022*
C20.12070 (9)0.6498 (4)0.77892 (14)0.0141 (4)
C30.08859 (9)0.4501 (4)0.73724 (14)0.0155 (4)
C40.05440 (10)0.3014 (4)0.78332 (16)0.0200 (5)
H40.03380.16450.75310.024*
C50.05072 (10)0.3551 (4)0.87379 (16)0.0223 (5)
H50.02780.25380.90670.027*
C60.08033 (10)0.5564 (4)0.91680 (15)0.0212 (5)
H60.07690.59500.97860.025*
C70.11498 (10)0.7015 (4)0.86974 (15)0.0183 (5)
H70.13530.83890.90000.022*
C80.27666 (10)1.0359 (4)0.90613 (15)0.0164 (4)
C90.25232 (10)1.2752 (4)0.92308 (15)0.0202 (5)
H9A0.20851.29900.88270.024*
H9B0.28151.39680.90680.024*
C100.24949 (10)1.3006 (4)1.02568 (15)0.0214 (5)
H10A0.23721.46431.03750.026*
H10B0.21581.19391.03930.026*
C110.32969 (10)0.9998 (4)1.07409 (15)0.0188 (5)
H11A0.29570.89341.08710.023*
H11B0.37100.96101.11870.023*
C120.33726 (10)0.9598 (4)0.97427 (15)0.0188 (5)
H12A0.37471.05120.96340.023*
H12B0.34550.79070.96490.023*
C130.30752 (11)1.2827 (5)1.18558 (15)0.0246 (5)
H13A0.27781.16391.20240.030*
H13B0.28861.44031.19070.030*
C140.37229 (10)1.2669 (4)1.25436 (15)0.0198 (5)
C150.38856 (11)1.0734 (4)1.31350 (15)0.0222 (5)
H150.35880.94671.31020.027*
C160.44798 (12)1.0645 (4)1.37719 (16)0.0258 (5)
H160.45870.93161.41710.031*
C170.49166 (11)1.2485 (5)1.38284 (16)0.0263 (5)
H170.53211.24331.42720.032*
C180.47616 (11)1.4401 (4)1.32351 (17)0.0249 (5)
H180.50621.56581.32630.030*
C190.41685 (11)1.4481 (4)1.26022 (16)0.0229 (5)
H190.40651.58051.21990.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02297 (11)0.02514 (14)0.01779 (12)−0.00154 (10)0.00266 (8)−0.00613 (10)
O10.0158 (7)0.0169 (8)0.0189 (8)−0.0016 (6)−0.0045 (6)0.0019 (7)
N10.0136 (8)0.0198 (10)0.0194 (9)0.0013 (7)−0.0002 (7)0.0026 (8)
N20.0140 (8)0.0219 (10)0.0160 (9)0.0038 (7)0.0006 (7)−0.0017 (8)
C10.0175 (10)0.0189 (11)0.0169 (11)−0.0036 (9)−0.0011 (8)−0.0009 (9)
C20.0122 (9)0.0140 (11)0.0142 (10)0.0022 (8)−0.0013 (7)0.0010 (9)
C30.0129 (9)0.0176 (11)0.0143 (10)0.0025 (8)−0.0006 (8)−0.0020 (9)
C40.0155 (10)0.0183 (11)0.0242 (12)0.0008 (9)0.0005 (9)0.0012 (10)
C50.0188 (10)0.0258 (13)0.0219 (11)−0.0007 (9)0.0033 (9)0.0071 (10)
C60.0207 (11)0.0283 (13)0.0139 (10)0.0031 (9)0.0025 (8)0.0033 (10)
C70.0159 (10)0.0199 (11)0.0167 (11)0.0003 (9)−0.0015 (8)−0.0018 (9)
C80.0147 (10)0.0184 (11)0.0159 (10)−0.0007 (8)0.0029 (8)0.0007 (9)
C90.0203 (10)0.0186 (12)0.0183 (11)0.0012 (9)−0.0027 (9)−0.0008 (10)
C100.0158 (10)0.0253 (12)0.0215 (11)0.0039 (9)0.0008 (9)−0.0029 (10)
C110.0160 (10)0.0214 (12)0.0175 (11)0.0010 (9)0.0006 (8)0.0001 (10)
C120.0139 (10)0.0209 (12)0.0199 (11)0.0030 (9)0.0004 (8)−0.0018 (10)
C130.0197 (11)0.0363 (14)0.0179 (11)0.0038 (10)0.0046 (9)−0.0026 (11)
C140.0184 (10)0.0271 (13)0.0144 (10)0.0033 (9)0.0050 (8)−0.0037 (10)
C150.0264 (11)0.0232 (13)0.0176 (11)−0.0035 (9)0.0060 (9)−0.0023 (10)
C160.0311 (13)0.0288 (14)0.0179 (11)0.0036 (10)0.0059 (10)0.0048 (10)
C170.0211 (11)0.0360 (15)0.0199 (12)0.0007 (10)0.0010 (9)−0.0027 (12)
C180.0242 (12)0.0246 (13)0.0258 (13)−0.0055 (10)0.0054 (10)−0.0013 (11)
C190.0241 (11)0.0227 (12)0.0223 (12)0.0039 (9)0.0059 (9)0.0038 (10)

Geometric parameters (Å, º)

Br1—C31.908 (2)C9—H9A0.9900
O1—C11.420 (2)C9—H9B0.9900
O1—N11.437 (2)C10—H10A0.9900
N1—C81.279 (3)C10—H10B0.9900
N2—C111.462 (3)C11—C121.523 (3)
N2—C131.466 (3)C11—H11A0.9900
N2—C101.466 (2)C11—H11B0.9900
C1—C21.504 (3)C12—H12A0.9900
C1—H1A0.9900C12—H12B0.9900
C1—H1B0.9900C13—C141.509 (3)
C2—C31.389 (3)C13—H13A0.9900
C2—C71.393 (3)C13—H13B0.9900
C3—C41.382 (3)C14—C191.384 (3)
C4—C51.379 (3)C14—C151.392 (3)
C4—H40.9500C15—C161.387 (3)
C5—C61.384 (3)C15—H150.9500
C5—H50.9500C16—C171.384 (3)
C6—C71.385 (3)C16—H160.9500
C6—H60.9500C17—C181.384 (3)
C7—H70.9500C17—H170.9500
C8—C91.492 (3)C18—C191.382 (3)
C8—C121.500 (3)C18—H180.9500
C9—C101.524 (3)C19—H190.9500
C1—O1—N1107.75 (15)C9—C10—H10A109.3
C8—N1—O1110.33 (17)N2—C10—H10B109.3
C11—N2—C13110.74 (18)C9—C10—H10B109.3
C11—N2—C10109.94 (17)H10A—C10—H10B108.0
C13—N2—C10109.04 (17)N2—C11—C12111.28 (18)
O1—C1—C2113.28 (18)N2—C11—H11A109.4
O1—C1—H1A108.9C12—C11—H11A109.4
C2—C1—H1A108.9N2—C11—H11B109.4
O1—C1—H1B108.9C12—C11—H11B109.4
C2—C1—H1B108.9H11A—C11—H11B108.0
H1A—C1—H1B107.7C8—C12—C11109.66 (18)
C3—C2—C7116.8 (2)C8—C12—H12A109.7
C3—C2—C1121.16 (19)C11—C12—H12A109.7
C7—C2—C1121.99 (19)C8—C12—H12B109.7
C4—C3—C2122.8 (2)C11—C12—H12B109.7
C4—C3—Br1118.18 (16)H12A—C12—H12B108.2
C2—C3—Br1119.04 (16)N2—C13—C14112.97 (18)
C5—C4—C3118.9 (2)N2—C13—H13A109.0
C5—C4—H4120.5C14—C13—H13A109.0
C3—C4—H4120.5N2—C13—H13B109.0
C4—C5—C6120.1 (2)C14—C13—H13B109.0
C4—C5—H5119.9H13A—C13—H13B107.8
C6—C5—H5119.9C19—C14—C15118.5 (2)
C5—C6—C7120.0 (2)C19—C14—C13120.0 (2)
C5—C6—H6120.0C15—C14—C13121.4 (2)
C7—C6—H6120.0C16—C15—C14120.4 (2)
C6—C7—C2121.3 (2)C16—C15—H15119.8
C6—C7—H7119.4C14—C15—H15119.8
C2—C7—H7119.4C17—C16—C15120.3 (2)
N1—C8—C9127.48 (19)C17—C16—H16119.9
N1—C8—C12117.18 (19)C15—C16—H16119.9
C9—C8—C12115.27 (18)C18—C17—C16119.6 (2)
C8—C9—C10109.98 (18)C18—C17—H17120.2
C8—C9—H9A109.7C16—C17—H17120.2
C10—C9—H9A109.7C19—C18—C17119.8 (2)
C8—C9—H9B109.7C19—C18—H18120.1
C10—C9—H9B109.7C17—C18—H18120.1
H9A—C9—H9B108.2C18—C19—C14121.3 (2)
N2—C10—C9111.39 (18)C18—C19—H19119.3
N2—C10—H10A109.3C14—C19—H19119.3
C1—O1—N1—C8−169.11 (18)C13—N2—C10—C9177.2 (2)
N1—O1—C1—C278.7 (2)C8—C9—C10—N253.8 (3)
O1—C1—C2—C3−175.08 (17)C13—N2—C11—C12−177.74 (17)
O1—C1—C2—C75.1 (3)C10—N2—C11—C1261.7 (2)
C7—C2—C3—C4−2.5 (3)N1—C8—C12—C11−127.6 (2)
C1—C2—C3—C4177.67 (19)C9—C8—C12—C1149.4 (3)
C7—C2—C3—Br1175.90 (15)N2—C11—C12—C8−54.7 (2)
C1—C2—C3—Br1−3.9 (3)C11—N2—C13—C1468.1 (3)
C2—C3—C4—C51.4 (3)C10—N2—C13—C14−170.8 (2)
Br1—C3—C4—C5−177.08 (16)N2—C13—C14—C1974.1 (3)
C3—C4—C5—C60.7 (3)N2—C13—C14—C15−106.4 (3)
C4—C5—C6—C7−1.4 (3)C19—C14—C15—C160.5 (3)
C5—C6—C7—C20.2 (3)C13—C14—C15—C16−179.0 (2)
C3—C2—C7—C61.7 (3)C14—C15—C16—C170.2 (4)
C1—C2—C7—C6−178.5 (2)C15—C16—C17—C18−1.0 (4)
O1—N1—C8—C93.7 (3)C16—C17—C18—C191.0 (4)
O1—N1—C8—C12−179.76 (17)C17—C18—C19—C14−0.3 (4)
N1—C8—C9—C10127.6 (2)C15—C14—C19—C18−0.5 (3)
C12—C8—C9—C10−49.1 (3)C13—C14—C19—C18179.0 (2)
C11—N2—C10—C9−61.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2101).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Jayabharathi, J., Manimekalai, A. & Padmavathy, M. (2011). Med. Chem. Res. 20, 981–995.
  • Mikhaleva, A., Zaitsev, A. B. & Trofimov, B. A. (2006). Russ. Chem. Rev. 75, 797–823.
  • Oxford Diffraction (2010). CrysAlis PROOxford Diffraction Ltd, Yarnton, England.
  • Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985. [PubMed]
  • Parthiban, P., Pallela, R., Kim, S., Park, D. & Jeong, Y. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686. [PubMed]
  • Picard, F., Baston, E., Reichert, W. & Hartmann, R. (2000). Bioorg. Med. Chem. 8, 1479–1487. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography