PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 October 1; 68(Pt 10): o3030.
Published online 2012 September 29. doi:  10.1107/S1600536812040354
PMCID: PMC3470384

(E)-N-(3,3-Diphenyl­allyl­idene)-3-nitro­aniline

Abstract

In the title compound, C21H16N2O2, the 3-nitro­phenyl and two phenyl rings are twisted from the mean plane of the enimino fragment by 44.4 (1), 37.2 (1) and 74.1 (1)°, respectively. The crystal packing exhibits no classical inter­molecular contacts.

Related literature  

For the structure of (E)-N-(3,3-diphenylallylidene)-4-nitroaniline, see: Kang et al. (2012 [triangle]). For the crystal structures of other closely related compounds, see: Khalaji et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o3030-scheme1.jpg

Experimental  

Crystal data  

  • C21H16N2O2
  • M r = 328.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o3030-efi1.jpg
  • a = 5.8625 (7) Å
  • b = 22.825 (3) Å
  • c = 12.6370 (17) Å
  • β = 94.772 (4)°
  • V = 1685.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.40 × 0.20 × 0.20 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995 [triangle]) T min = 0.967, T max = 0.983
  • 16270 measured reflections
  • 3866 independent reflections
  • 2663 reflections with I > 2σ(I)
  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.136
  • S = 1.12
  • 3866 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure (Rigaku, 2010 [triangle]); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040354/cv5343sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040354/cv5343Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812040354/cv5343Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

supplementary crystallographic information

Comment

In the title molecule (Fig. 1), the dihedral angles between the mean planes of the central 3-nitrophenyl ring and phenyl rings C7–C12 and C1–C6 are 86.76 (8)° and 8.23 (3)°, respectively. The bond lengths and angles are unexceptional and correspond to those observed in the related compounds Khalaji et al. (2008a,b). The imine group displays a torsion angle C21–C16–N1–C15 of -45.19 (18)°. The nitro group is twisted at 1.1 (2)° from the attached benzene ring. The crystal packing exhibits no classical intermolecular contacts.

Experimental

To a solution of 3-nitroaniline (4.0 mmol) in ethanol (10 mL) was treated with equimolar quantities of substituted 2-phenylcinnamaldehydes. The mixture was refluxed for 5 h, and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound in 60% yield. Recrystallization from ethanol gave crystals suitable for X-ray analysis.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.

Crystal data

C21H16N2O2F(000) = 688
Mr = 328.36Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 8104 reflections
a = 5.8625 (7) Åθ = 3.1–27.5°
b = 22.825 (3) ŵ = 0.08 mm1
c = 12.6370 (17) ÅT = 296 K
β = 94.772 (4)°Block, colourless
V = 1685.1 (4) Å30.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3866 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −7→7
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995)k = −29→29
Tmin = 0.967, Tmax = 0.983l = −16→16
16270 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3
3866 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2806 (3)0.79532 (9)0.84554 (13)0.1205 (6)
O21.5869 (3)0.74640 (6)0.83527 (11)0.0942 (5)
N11.14274 (19)0.90554 (5)0.51096 (9)0.0464 (3)
N21.4414 (3)0.78014 (6)0.79813 (11)0.0690 (4)
C10.5605 (3)1.01496 (6)0.15119 (11)0.0525 (4)
H10.65621.00340.09990.063*
C20.3920 (3)1.05589 (7)0.12595 (13)0.0613 (4)
H20.37761.07240.05840.074*
C30.2448 (3)1.07259 (7)0.19989 (13)0.0573 (4)
H30.12921.09960.18200.069*
C40.2700 (2)1.04891 (6)0.30091 (12)0.0506 (3)
H40.17171.06020.35130.061*
C50.4406 (2)1.00859 (6)0.32705 (11)0.0452 (3)
H50.45670.99310.39530.054*
C60.5893 (2)0.99065 (5)0.25294 (10)0.0405 (3)
C71.0213 (2)0.90953 (7)0.14288 (12)0.0557 (4)
H71.13020.93760.16450.067*
C81.0584 (3)0.87204 (8)0.05913 (13)0.0639 (4)
H81.19130.87560.02430.077*
C90.9005 (3)0.82994 (7)0.02771 (12)0.0604 (4)
H90.92650.8050−0.02820.072*
C100.7044 (3)0.82455 (6)0.07869 (13)0.0594 (4)
H100.59790.79570.05800.071*
C110.6648 (2)0.86225 (6)0.16137 (11)0.0510 (3)
H110.53060.85870.19530.061*
C120.8224 (2)0.90501 (6)0.19400 (10)0.0410 (3)
C130.7721 (2)0.94683 (5)0.28026 (10)0.0398 (3)
C140.8838 (2)0.94559 (6)0.37731 (10)0.0442 (3)
H140.84890.97490.42450.053*
C151.0533 (2)0.90295 (6)0.41509 (10)0.0443 (3)
H151.09750.87370.36990.053*
C161.3099 (2)0.86430 (5)0.54794 (10)0.0410 (3)
C171.2973 (2)0.84251 (6)0.65043 (10)0.0463 (3)
H171.17830.85360.69040.056*
C181.4632 (2)0.80448 (6)0.69138 (11)0.0482 (3)
C191.6476 (2)0.78813 (6)0.63736 (13)0.0539 (4)
H191.75940.76300.66780.065*
C201.6606 (2)0.81029 (6)0.53643 (13)0.0554 (4)
H201.78350.80020.49810.067*
C211.4928 (2)0.84741 (6)0.49177 (11)0.0495 (3)
H211.50260.86130.42310.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1312 (13)0.1592 (16)0.0769 (10)0.0438 (12)0.0438 (10)0.0502 (10)
O20.1215 (11)0.0826 (9)0.0741 (9)0.0176 (8)−0.0187 (8)0.0249 (7)
N10.0500 (6)0.0493 (6)0.0393 (6)0.0027 (5)0.0002 (5)0.0003 (5)
N20.0866 (10)0.0658 (9)0.0528 (8)0.0040 (7)−0.0050 (8)0.0130 (7)
C10.0609 (8)0.0564 (8)0.0408 (7)0.0120 (7)0.0083 (6)0.0034 (6)
C20.0769 (10)0.0594 (9)0.0473 (8)0.0162 (8)0.0031 (7)0.0086 (7)
C30.0589 (8)0.0508 (8)0.0614 (9)0.0128 (7)0.0000 (7)−0.0032 (7)
C40.0492 (7)0.0508 (8)0.0528 (8)0.0019 (6)0.0092 (6)−0.0097 (6)
C50.0489 (7)0.0467 (7)0.0402 (7)−0.0042 (6)0.0051 (6)−0.0033 (6)
C60.0439 (6)0.0399 (6)0.0375 (6)−0.0028 (5)0.0025 (5)−0.0023 (5)
C70.0442 (7)0.0690 (9)0.0536 (8)−0.0002 (7)0.0027 (6)−0.0100 (7)
C80.0522 (8)0.0849 (11)0.0549 (9)0.0185 (8)0.0053 (7)−0.0081 (8)
C90.0762 (10)0.0566 (9)0.0464 (8)0.0275 (8)−0.0068 (8)−0.0081 (7)
C100.0752 (10)0.0443 (8)0.0564 (9)0.0008 (7)−0.0073 (8)−0.0059 (6)
C110.0552 (8)0.0493 (8)0.0483 (8)−0.0040 (6)0.0020 (6)−0.0015 (6)
C120.0420 (6)0.0421 (7)0.0380 (7)0.0047 (5)−0.0019 (5)0.0020 (5)
C130.0409 (6)0.0403 (6)0.0386 (6)−0.0033 (5)0.0051 (5)0.0012 (5)
C140.0474 (7)0.0443 (7)0.0405 (7)−0.0004 (6)0.0010 (6)−0.0019 (5)
C150.0479 (7)0.0448 (7)0.0400 (7)−0.0032 (6)0.0020 (6)−0.0004 (5)
C160.0439 (6)0.0415 (6)0.0370 (6)−0.0037 (5)−0.0001 (5)−0.0026 (5)
C170.0477 (7)0.0519 (7)0.0395 (7)0.0006 (6)0.0053 (6)−0.0013 (6)
C180.0559 (7)0.0451 (7)0.0425 (7)−0.0035 (6)−0.0034 (6)0.0011 (6)
C190.0528 (8)0.0434 (7)0.0637 (9)0.0046 (6)−0.0056 (7)−0.0020 (6)
C200.0485 (7)0.0523 (8)0.0667 (10)0.0017 (7)0.0123 (7)−0.0082 (7)
C210.0544 (7)0.0502 (7)0.0450 (7)−0.0032 (6)0.0094 (6)−0.0004 (6)

Geometric parameters (Å, º)

O1—N21.209 (2)C9—C101.369 (2)
O2—N21.2144 (18)C9—H90.9300
N1—C151.2808 (16)C10—C111.388 (2)
N1—C161.4101 (16)C10—H100.9300
N2—C181.4742 (19)C11—C121.3831 (19)
C1—C21.378 (2)C11—H110.9300
C1—C61.3977 (18)C12—C131.4965 (18)
C1—H10.9300C13—C141.3419 (18)
C2—C31.378 (2)C14—C151.4435 (18)
C2—H20.9300C14—H140.9300
C3—C41.383 (2)C15—H150.9300
C3—H30.9300C16—C211.3890 (19)
C4—C51.3792 (19)C16—C171.3950 (18)
C4—H40.9300C17—C181.3722 (19)
C5—C61.3930 (18)C17—H170.9300
C5—H50.9300C18—C191.377 (2)
C6—C131.4852 (17)C19—C201.380 (2)
C7—C121.383 (2)C19—H190.9300
C7—C81.392 (2)C20—C211.383 (2)
C7—H70.9300C20—H200.9300
C8—C91.370 (2)C21—H210.9300
C8—H80.9300
C15—N1—C16120.07 (12)C12—C11—C10120.85 (14)
O1—N2—O2122.82 (15)C12—C11—H11119.6
O1—N2—C18118.43 (14)C10—C11—H11119.6
O2—N2—C18118.75 (16)C7—C12—C11118.79 (12)
C2—C1—C6120.77 (13)C7—C12—C13121.17 (12)
C2—C1—H1119.6C11—C12—C13119.99 (11)
C6—C1—H1119.6C14—C13—C6120.97 (12)
C3—C2—C1120.55 (14)C14—C13—C12122.78 (11)
C3—C2—H2119.7C6—C13—C12116.25 (10)
C1—C2—H2119.7C13—C14—C15125.94 (12)
C2—C3—C4119.55 (13)C13—C14—H14117.0
C2—C3—H3120.2C15—C14—H14117.0
C4—C3—H3120.2N1—C15—C14119.87 (13)
C5—C4—C3120.11 (13)N1—C15—H15120.1
C5—C4—H4119.9C14—C15—H15120.1
C3—C4—H4119.9C21—C16—C17118.56 (12)
C4—C5—C6121.14 (13)C21—C16—N1124.11 (12)
C4—C5—H5119.4C17—C16—N1117.18 (12)
C6—C5—H5119.4C18—C17—C16119.03 (13)
C5—C6—C1117.87 (12)C18—C17—H17120.5
C5—C6—C13121.42 (12)C16—C17—H17120.5
C1—C6—C13120.71 (12)C17—C18—C19123.04 (13)
C12—C7—C8120.03 (14)C17—C18—N2118.09 (14)
C12—C7—H7120.0C19—C18—N2118.87 (13)
C8—C7—H7120.0C18—C19—C20117.71 (13)
C9—C8—C7120.46 (15)C18—C19—H19121.1
C9—C8—H8119.8C20—C19—H19121.1
C7—C8—H8119.8C21—C20—C19120.63 (14)
C10—C9—C8120.01 (14)C21—C20—H20119.7
C10—C9—H9120.0C19—C20—H20119.7
C8—C9—H9120.0C20—C21—C16120.99 (13)
C9—C10—C11119.85 (14)C20—C21—H21119.5
C9—C10—H10120.1C16—C21—H21119.5
C11—C10—H10120.1
C6—C1—C2—C3−1.6 (2)C7—C12—C13—C6107.60 (13)
C1—C2—C3—C41.4 (2)C11—C12—C13—C6−69.96 (15)
C2—C3—C4—C5−0.4 (2)C6—C13—C14—C15175.77 (12)
C3—C4—C5—C6−0.4 (2)C12—C13—C14—C15−4.3 (2)
C4—C5—C6—C10.18 (18)C16—N1—C15—C14−179.44 (11)
C4—C5—C6—C13−179.42 (11)C13—C14—C15—N1−177.81 (13)
C2—C1—C6—C50.8 (2)C15—N1—C16—C2145.24 (18)
C2—C1—C6—C13−179.58 (13)C15—N1—C16—C17−139.32 (13)
C12—C7—C8—C9−1.0 (2)C21—C16—C17—C18−1.14 (18)
C7—C8—C9—C100.1 (2)N1—C16—C17—C18−176.83 (11)
C8—C9—C10—C110.7 (2)C16—C17—C18—C192.3 (2)
C9—C10—C11—C12−0.7 (2)C16—C17—C18—N2−177.55 (12)
C8—C7—C12—C111.0 (2)O1—N2—C18—C17−1.1 (2)
C8—C7—C12—C13−176.60 (13)O2—N2—C18—C17179.95 (14)
C10—C11—C12—C7−0.2 (2)O1—N2—C18—C19179.04 (17)
C10—C11—C12—C13177.46 (12)O2—N2—C18—C190.1 (2)
C5—C6—C13—C14−36.10 (17)C17—C18—C19—C20−1.6 (2)
C1—C6—C13—C14144.31 (14)N2—C18—C19—C20178.26 (12)
C5—C6—C13—C12143.96 (12)C18—C19—C20—C21−0.3 (2)
C1—C6—C13—C12−35.63 (16)C19—C20—C21—C161.4 (2)
C7—C12—C13—C14−72.33 (17)C17—C16—C21—C20−0.66 (19)
C11—C12—C13—C14110.11 (14)N1—C16—C21—C20174.72 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5343).

References

  • Kang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031. [PMC free article] [PubMed]
  • Khalaji, A. D. & Harrison, W. T. A. (2008a). Anal. Sci. X-Ray Struct. Anal. Online, 24, x3–x4.
  • Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. X-Ray Struct. Anal. Online, 24, x139–x140.
  • Rigaku (1995). ABSCORRigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). RAPID-AUTORigaku Corporation, Tokyo, Japan.
  • Rigaku (2010). CrystalStructureRigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography