PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 October 1; 68(Pt 10): o3027.
Published online 2012 September 29. doi:  10.1107/S1600536812036793
PMCID: PMC3470381

(E)-1-[(3-Iodo­phen­yl)imino­meth­yl]naphthalen-2-ol

Abstract

In the title mol­ecule, C17H12INO, the dihedral angle between the naphthaldeyde plane and the 3-iodo­aniline plane is20.07 (13)°. It exists in the solid state as an enol–imine tautomer with a strong intra­molecular O—H(...)N hydrogen bond.

Related literature  

For the applications of iodoaromatic compounds in synthetic organic chemistry, medicine and biochemistry, see; Merkushev (1988 [triangle]); Olah et al. (1993 [triangle]). Schiff base complexes have been used in catalytic reactions and are used as models for biological systems, see: Hamilton et al. (1987 [triangle]); Pyrz et al. (1985 [triangle]); Costamagna et al. (1992 [triangle]). For related structures, see: Ünver et al. (2000 [triangle]); Manvizhi et al. (2011 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o3027-scheme1.jpg

Experimental  

Crystal data  

  • C17H12INO
  • M r = 373.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o3027-efi1.jpg
  • a = 32.059 (3) Å
  • b = 4.8392 (3) Å
  • c = 19.2682 (16) Å
  • β = 107.269 (6)°
  • V = 2854.5 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.24 mm−1
  • T = 296 K
  • 0.80 × 0.30 × 0.03 mm

Data collection  

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.793, T max = 0.925
  • 9569 measured reflections
  • 2781 independent reflections
  • 1607 reflections with I > 2σ(I)
  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.094
  • S = 0.93
  • 2781 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: WinGX (Farrugia, 1997 [triangle]) and SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036793/zj2093sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036793/zj2093Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812036793/zj2093Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812036793/zj2093Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ondokuz Mayis University Research Fund for financial support of this project.

supplementary crystallographic information

Comment

Iodoaromatic compounds are valuable and versatile synthetic intermediates in many domains of synthetic organic chemistry, medicine and biochemistry (Merkushev et al., 1988; Olah et al., 1993). The Schiff base complexes have also been used in catalytic reactions (Hamilton et al., 1987) are used as models for biological systems (Pyrz et al., 1985; Costamagna et al., 1992). There are two types of intramolecular hydrogen bonds in Schiff bases, namely keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms. The present X-ray investigation shows that the title compound,(I), prefers the enol-imine tautomeric form rather than the keto-amine tautomeric form. The C9—O1 and C7—N1 bond lengths verify the enol-imine tautomeric form. these distances agree with the literature[1.310 (8) and 1.319 (6)Â; Ünver et al. 2000], which also show the enol-imine tautomeric form. The C1—I1 bond lenght in (I) is also in a good agremeent with the corresponding distances in the literature [2.092 (4)Â; Manvizhi et al., 2011]. The bond distances for O1-H1O1 and N1-H1O1 are 0.82 and 1.82 Â, respectively, and the N1···H1—O1 angle is 148 Å. These distances and angle agree with the literature[Ünver et al. 2000], The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond. An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the b axis. The molecule is non-planar. The angle between the two Schiff base moieties [C1—C6,N1,I1] and [C7—C13,O1,N1] is 20.07 (13) Å. Cg(1), Cg(2) and Cg(3) are the centroids of rings C1—C6, C8—C13 and C12—C17, respectively. However, π···π interactions between the centroids of the Cg(1) and Cg(2) rings (distance between ring centroids = 4.664 (3) Â), and the Cg(2) and Cg(3) rings (distance between ring centroids = 4.791 (3)Â), stack the molecules along the b-axis.

Experimental

The compound E)—1-((3-iodophenyllimino)methyl)naphthalen-2-ol (E)-1-((3-bromophenyllimino)methyl)naphthalen-2-ol was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (17.2 mg 0.100 mmol) in 30 ml absolute ethanol and a solution containing 3-iodoaniline (21.9 mg 0.100 mmol) in 20 ml absolute ethanol. The reaction mixture was stirred for 4 h under reflux. Single crystals of the title compound for X-ray anaysis were obtaned by slow evaporation of an ethaol solition (yield % 67; m.p 410–412 oK).

Refinement

All carbon attached H-atoms were refined using riding model for hydrogen bonds with d(C—H) = 0.93 Å (Uiso=1.2Ueq of the parent atom) for aromatic carbon atoms and d(C—H) = 0.96 Å (Uiso=1.5Ueq of the parent atom) for methyl carbon atoms.

Figures

Fig. 1.
The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the b axis.

Crystal data

C17H12INOF(000) = 1456
Mr = 373.18Dx = 1.737 Mg m3
Monoclinic, C2/cMelting point = 410–412 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.059 (3) ÅCell parameters from 9569 reflections
b = 4.8392 (3) Åθ = 1.3–26.0°
c = 19.2682 (16) ŵ = 2.24 mm1
β = 107.269 (6)°T = 296 K
V = 2854.5 (4) Å3Needle, yellow
Z = 80.80 × 0.30 × 0.03 mm

Data collection

Stoe IPDS 2 diffractometer2781 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
w–scan rotationθmax = 26.0°, θmin = 1.3°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)h = −38→38
Tmin = 0.793, Tmax = 0.925k = −5→5
9569 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
2781 reflectionsΔρmax = 0.87 e Å3
181 parametersΔρmin = −0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.052729 (12)0.52255 (9)0.33319 (2)0.08465 (19)
C50.16216 (15)0.0503 (9)0.4653 (2)0.0490 (11)
C80.15014 (14)−0.4836 (10)0.5955 (2)0.0498 (11)
O10.22667 (12)−0.3804 (8)0.6294 (2)0.0784 (11)
H10.2177−0.27660.59460.118*
C90.19336 (16)−0.5200 (11)0.6398 (3)0.0593 (13)
C110.1710 (2)−0.8587 (12)0.7108 (3)0.0712 (16)
H110.1781−0.98380.74910.085*
N10.17155 (13)−0.1458 (9)0.5220 (2)0.0546 (10)
C40.19651 (17)0.1402 (12)0.4410 (3)0.0620 (13)
H40.22430.06720.46160.074*
C60.12123 (16)0.1594 (10)0.4331 (2)0.0514 (12)
H60.09760.10100.44810.062*
C70.14134 (16)−0.2876 (10)0.5375 (2)0.0508 (12)
H70.1125−0.26070.50960.061*
C30.19005 (19)0.3351 (13)0.3873 (3)0.0721 (16)
H30.21350.39350.37200.087*
C20.14946 (18)0.4450 (11)0.3557 (3)0.0655 (14)
H20.14510.57790.31940.079*
C10.11518 (16)0.3532 (11)0.3793 (2)0.0544 (12)
C130.11570 (16)−0.6479 (10)0.6093 (2)0.0510 (12)
C170.0936 (2)−0.9958 (12)0.6815 (3)0.0797 (16)
H170.1007−1.11920.72030.096*
C140.07180 (17)−0.6311 (12)0.5668 (3)0.0651 (14)
H140.0638−0.50920.52770.078*
C160.0511 (2)−0.9750 (14)0.6391 (4)0.0868 (18)
H160.0296−1.08360.64880.104*
C100.20262 (19)−0.7080 (12)0.6980 (3)0.0693 (15)
H100.2312−0.72730.72790.083*
C120.1268 (2)−0.8351 (11)0.6679 (3)0.0613 (14)
C150.0407 (2)−0.7938 (14)0.5825 (4)0.0810 (17)
H150.0118−0.77990.55380.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0709 (2)0.0937 (3)0.0771 (3)0.0026 (2)0.00310 (19)0.0215 (2)
C50.053 (3)0.047 (3)0.047 (3)−0.006 (2)0.014 (2)−0.009 (2)
C80.058 (3)0.048 (3)0.045 (2)0.007 (2)0.017 (2)−0.005 (2)
O10.054 (2)0.094 (3)0.079 (3)0.005 (2)0.007 (2)0.005 (2)
C90.058 (3)0.060 (3)0.058 (3)0.010 (3)0.015 (2)−0.010 (3)
C110.104 (5)0.060 (4)0.045 (3)0.021 (3)0.014 (3)0.006 (3)
N10.053 (2)0.055 (3)0.056 (2)0.001 (2)0.016 (2)−0.005 (2)
C40.053 (3)0.067 (4)0.067 (3)−0.011 (3)0.019 (3)−0.009 (3)
C60.054 (3)0.056 (3)0.045 (3)−0.010 (2)0.015 (2)−0.005 (2)
C70.050 (3)0.053 (3)0.046 (3)0.004 (2)0.010 (2)−0.007 (2)
C30.069 (4)0.085 (4)0.070 (4)−0.027 (3)0.032 (3)−0.004 (3)
C20.073 (3)0.073 (4)0.051 (3)−0.012 (3)0.018 (3)0.004 (3)
C10.058 (3)0.060 (3)0.043 (3)−0.009 (2)0.011 (2)−0.007 (2)
C130.060 (3)0.045 (3)0.052 (3)0.005 (2)0.022 (2)−0.007 (2)
C170.114 (5)0.059 (4)0.080 (4)0.007 (4)0.049 (4)0.005 (3)
C140.059 (3)0.068 (4)0.070 (3)−0.002 (3)0.022 (3)0.001 (3)
C160.099 (5)0.073 (4)0.107 (5)−0.017 (4)0.059 (4)−0.005 (4)
C100.067 (4)0.071 (4)0.060 (3)0.014 (3)0.004 (3)0.001 (3)
C120.090 (4)0.048 (3)0.053 (3)0.008 (3)0.032 (3)−0.001 (2)
C150.069 (4)0.082 (5)0.097 (5)−0.006 (3)0.032 (4)−0.013 (4)

Geometric parameters (Å, º)

I1—C12.101 (5)C6—H60.9300
C5—C61.379 (6)C7—H70.9300
C5—C41.387 (6)C3—C21.370 (7)
C5—N11.411 (6)C3—H30.9300
C8—C91.406 (6)C2—C11.381 (7)
C8—C71.428 (6)C2—H20.9300
C8—C131.448 (7)C13—C141.406 (7)
O1—C91.328 (6)C13—C121.408 (7)
O1—H10.8200C17—C161.368 (9)
C9—C101.405 (7)C17—C121.404 (8)
C11—C101.331 (8)C17—H170.9300
C11—C121.416 (7)C14—C151.373 (8)
C11—H110.9300C14—H140.9300
N1—C71.292 (6)C16—C151.361 (9)
C4—C31.370 (8)C16—H160.9300
C4—H40.9300C10—H100.9300
C6—C11.369 (7)C15—H150.9300
C6—C5—C4118.3 (5)C3—C2—H2120.9
C6—C5—N1124.1 (4)C1—C2—H2120.9
C4—C5—N1117.6 (4)C6—C1—C2121.4 (5)
C9—C8—C7119.3 (4)C6—C1—I1119.4 (4)
C9—C8—C13119.1 (4)C2—C1—I1119.2 (4)
C7—C8—C13121.6 (4)C14—C13—C12118.4 (5)
C9—O1—H1109.5C14—C13—C8123.1 (4)
O1—C9—C10117.4 (5)C12—C13—C8118.4 (5)
O1—C9—C8122.4 (5)C16—C17—C12121.5 (6)
C10—C9—C8120.2 (5)C16—C17—H17119.2
C10—C11—C12122.2 (5)C12—C17—H17119.2
C10—C11—H11118.9C15—C14—C13120.3 (5)
C12—C11—H11118.9C15—C14—H14119.9
C7—N1—C5122.3 (4)C13—C14—H14119.9
C3—C4—C5120.9 (5)C15—C16—C17119.3 (6)
C3—C4—H4119.6C15—C16—H16120.4
C5—C4—H4119.6C17—C16—H16120.4
C1—C6—C5120.3 (4)C11—C10—C9120.7 (5)
C1—C6—H6119.8C11—C10—H10119.7
C5—C6—H6119.8C9—C10—H10119.7
N1—C7—C8123.1 (4)C17—C12—C13118.8 (6)
N1—C7—H7118.5C17—C12—C11121.9 (5)
C8—C7—H7118.5C13—C12—C11119.4 (5)
C2—C3—C4120.9 (5)C16—C15—C14121.7 (6)
C2—C3—H3119.6C16—C15—H15119.1
C4—C3—H3119.6C14—C15—H15119.1
C3—C2—C1118.3 (5)
C7—C8—C9—O1−0.8 (7)C7—C8—C13—C141.2 (7)
C13—C8—C9—O1178.7 (4)C9—C8—C13—C121.1 (6)
C7—C8—C9—C10178.8 (4)C7—C8—C13—C12−179.4 (4)
C13—C8—C9—C10−1.7 (7)C12—C13—C14—C150.2 (8)
C6—C5—N1—C716.5 (7)C8—C13—C14—C15179.6 (5)
C4—C5—N1—C7−164.2 (4)C12—C17—C16—C15−0.2 (9)
C6—C5—C4—C30.9 (7)C12—C11—C10—C9−1.1 (9)
N1—C5—C4—C3−178.5 (4)O1—C9—C10—C11−178.7 (5)
C4—C5—C6—C1−0.6 (7)C8—C9—C10—C111.7 (8)
N1—C5—C6—C1178.7 (4)C16—C17—C12—C130.3 (8)
C5—N1—C7—C8−179.0 (4)C16—C17—C12—C11−178.9 (5)
C9—C8—C7—N12.2 (7)C14—C13—C12—C17−0.3 (7)
C13—C8—C7—N1−177.2 (4)C8—C13—C12—C17−179.8 (4)
C5—C4—C3—C2−0.4 (8)C14—C13—C12—C11179.0 (5)
C4—C3—C2—C1−0.3 (8)C8—C13—C12—C11−0.5 (7)
C5—C6—C1—C2−0.1 (7)C10—C11—C12—C17179.7 (5)
C5—C6—C1—I1−178.5 (3)C10—C11—C12—C130.5 (8)
C3—C2—C1—C60.6 (8)C17—C16—C15—C140.1 (9)
C3—C2—C1—I1179.0 (4)C13—C14—C15—C16−0.1 (9)
C9—C8—C13—C14−178.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.555 (6)148

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2093).

References

  • Costamagna, J., Vargas, J., Latorre, R., Alvarado, R. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Hamilton, D. E., Drago, R. S. & Zombeck, A. (1987). J. Am. Chem. Soc. 109, 374–379.
  • Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500. [PMC free article] [PubMed]
  • Merkushev, E. B. (1988). Synthesis, pp. 923–925.
  • Olah, G. A., Wang, Q. & Prakash, G. K. (1993). J. Org. Chem. 58, 3194–3195.
  • Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614–620.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32Stoe & Cie, Darmstadt, Germany.
  • Ünver, H., Zengin, D. M. & Güven, K. (2000). J. Chem. Crystallogr. 30, 359–364.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography