PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Oct 1, 2012; 68(Pt 10): o3026.
Published online Sep 29, 2012. doi:  10.1107/S1600536812034344
PMCID: PMC3470380
4-Meth­oxy-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­idene]aniline
Tufan Akbal,a* Erbil Ağar,b Sümeyye Gümüş,b and Ahmet Erdönmeza
aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey
bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey
Correspondence e-mail: takbal/at/omu.edu.tr
Received July 3, 2012; Accepted August 1, 2012.
The title mol­ecule, C12H10N2O3S, is nonplanar with an inter­planar angle of 33.44 (7)° between the benzene and thio­phene rings. In the crystal there exist only weak inter­molecular C—H(...)O inter­actions, π–π inter­actions between the benzene rings [centroid–centroid distance = 3.7465 (14) Å] and XY(...)π inter­actions to the thio­phene and benzene rings [N(...)centroid distances = 3.718 (3) and 3.355 (3) Å, respectively]. Inter­molecular C—H(...)O inter­actions link the mol­ecules into chains parallel to the a axis.
Related literature  
For the biological properties of Schiff bases, see Layer (1963 [triangle]); Ingold (1969 [triangle]); Barton & Ollis (1979 [triangle]). For the application of Schiff bases in industry, see Taggi et al. (2002 [triangle]). For related structures, see Ceylan et al. (2011 [triangle]); Özdemir & Işık (2012 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-o3026-scheme1.jpg Object name is e-68-o3026-scheme1.jpg
Crystal data  
  • C12H10N2O3S
  • M r = 262.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o3026-efi1.jpg
  • a = 12.5641 (7) Å
  • b = 13.1441 (5) Å
  • c = 7.7896 (4) Å
  • β = 106.012 (4)°
  • V = 1236.50 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.69 × 0.51 × 0.28 mm
Data collection  
  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.873, T max = 0.938
  • 20097 measured reflections
  • 2841 independent reflections
  • 2076 reflections with I > 2σ(I)
  • R int = 0.053
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 1.15
  • 2841 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.22 e Å−3
Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: WinGX (Farrugia, 1997 [triangle]) and SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812034344/fb2260sup1.cif
Supplementary material file. DOI: 10.1107/S1600536812034344/fb2260Isup2.mol
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034344/fb2260Isup3.hkl
Supplementary material file. DOI: 10.1107/S1600536812034344/fb2260Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Ondokuz Mayis University Research Fund for financial support of the project.
supplementary crystallographic information
Comment
The Schiff bases, i. e. the compounds having a double C═N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Layer, 1963; Ingold, 1969; Barton & Ollis, 1979). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002).
The title molecule is shown in Fig. 1. The molecule is non-planar, with an interplanar angle of 33.44 (7)° between the benzene and the substituted thiophene rings. The length of the C11═N2 double bond is 1.268 (3) Å. This value agrees well with the analogous bond reported elsewhere (Ceylan et al. 2011; Özdemir Tari & Işık, 2012). In the crystal (Fig. 2), two different C—H···O intermolecular interactions (Table 1) generate chains of molecules extending along the a axis. The distance 3.7465 (14) Å between the centroids of the neighbouring benzene rings related by the symmetry operation 1-x, -y, 1-z indicates a π-electron—π-electron ring interaction. Intermolecular X—Y···π-electron ring interactions are also present in the crystal structure (N1—O1···Cg1i=3.718 (3) Å and N1—O2···Cg2ii=3.355 (3) Å where Cg1 and Cg2 are the centroids of the rings C7—C10/S1 (substituted thiophene) and C1—C6 (benzene), respectively, and the symmetry codes i and ii correspond to 2-x, -y, -z and x, 1/2-y, -1/2+z, respectively.
Experimental
The title compound was prepared under reflux at room temperature of a mixture of two solutions: One contained 5-nitro-2-thiophene-carboxaldehyde (0.016 g, 0.100 mmol) in 20 ml of absolute ethanol, while the other 4-methoxyaniline (0.012 g, 0.100 mmol) in 20 ml of absolute ethanol. The reaction mixture was stirred for 1 h under reflux. Yellow, transparent crystals were obtained by slow evaporation from ethanol solution at room temperature (yield 68 wt. %; m.p. 414–417 K). The average size of the prismatic crystals was about 0.12 × 0.45 × 0.80 mm.
Refinement
All the hydrogen atoms appeared in the difference electron density map, nevertheless, they were situated into the idealized positions and refined in the riding atom formalism. The applied constraints: Cmethyl—Hmethyl=0.96, Caryl—Haryl=0.93 Å. Uiso(Hmethyl) = 1.5Ueq(Cmethyl), Uiso(Haryl) = 1.2Ueq(Caryl).
Figures
Fig. 1.
Fig. 1.
The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Fig. 2.
A view of the crystal packing of the title compound.
Crystal data
C12H10N2O3SF(000) = 544
Mr = 262.28Dx = 1.409 Mg m3
Monoclinic, P21/cMelting point = 414–417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5641 (7) ÅCell parameters from 20097 reflections
b = 13.1441 (5) Åθ = 2.3–27.6°
c = 7.7896 (4) ŵ = 0.26 mm1
β = 106.012 (4)°T = 296 K
V = 1236.50 (10) Å3Prism, yellow
Z = 40.69 × 0.51 × 0.28 mm
Data collection
Stoe IPDS 2 diffractometer2841 independent reflections
Radiation source: fine-focus sealed tube2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
w–scan rotationθmax = 27.6°, θmin = 2.3°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)h = −16→16
Tmin = 0.873, Tmax = 0.938k = −17→17
20097 measured reflectionsl = −10→9
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.125w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3031P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2841 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
39 constraintsExtinction coefficient: 0
Primary atom site location: structure-invariant direct methods
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
S10.77562 (5)0.12622 (5)0.06150 (7)0.05989 (19)
C10.51607 (18)0.11596 (17)0.3360 (3)0.0561 (5)
N20.60693 (16)0.11489 (15)0.2619 (3)0.0597 (5)
C110.70493 (19)0.11725 (18)0.3637 (3)0.0586 (5)
H110.71680.11760.48700.070*
C90.97699 (19)0.1197 (2)0.2631 (3)0.0658 (6)
H91.05400.11860.30030.079*
O30.23334 (13)0.11016 (14)0.5127 (2)0.0722 (5)
N10.95778 (19)0.12583 (16)−0.0612 (3)0.0693 (5)
C100.91555 (18)0.12453 (18)0.0913 (3)0.0576 (5)
C40.32882 (18)0.11543 (17)0.4617 (3)0.0572 (5)
O11.05738 (18)0.12534 (19)−0.0377 (3)0.0968 (7)
O20.88984 (18)0.12695 (18)−0.2095 (2)0.0922 (6)
C70.79851 (18)0.11941 (18)0.2889 (3)0.0554 (5)
C80.90855 (19)0.1166 (2)0.3776 (3)0.0657 (6)
H80.93530.11310.50130.079*
C20.5164 (2)0.1630 (2)0.4951 (3)0.0660 (6)
H20.58040.19560.56070.079*
C30.4248 (2)0.1628 (2)0.5585 (3)0.0661 (6)
H30.42730.19440.66630.079*
C50.32604 (19)0.0703 (2)0.3006 (3)0.0643 (6)
H50.26140.03900.23390.077*
C60.41788 (18)0.0713 (2)0.2382 (3)0.0616 (6)
H60.41440.04160.12850.074*
C120.2326 (3)0.1537 (3)0.6792 (4)0.0895 (9)
H12A0.16270.14020.70230.134*
H12B0.24350.22590.67540.134*
H12C0.29110.12450.77250.134*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
S10.0572 (3)0.0756 (4)0.0446 (3)−0.0047 (3)0.0102 (2)−0.0023 (3)
C10.0560 (12)0.0581 (13)0.0533 (12)−0.0017 (10)0.0132 (10)0.0017 (10)
N20.0581 (11)0.0657 (12)0.0558 (11)−0.0027 (9)0.0163 (9)0.0021 (9)
C110.0615 (13)0.0663 (14)0.0499 (12)−0.0029 (11)0.0184 (10)0.0034 (11)
C90.0530 (12)0.0927 (18)0.0504 (13)−0.0001 (12)0.0120 (10)−0.0022 (12)
O30.0560 (9)0.0878 (12)0.0758 (11)−0.0055 (8)0.0235 (8)−0.0134 (9)
N10.0777 (14)0.0796 (14)0.0574 (13)−0.0052 (12)0.0302 (11)−0.0056 (11)
C100.0595 (12)0.0671 (13)0.0487 (12)−0.0024 (11)0.0193 (10)−0.0034 (11)
C40.0505 (11)0.0578 (13)0.0617 (14)0.0034 (10)0.0129 (10)−0.0004 (11)
O10.0818 (13)0.1392 (19)0.0829 (14)−0.0052 (13)0.0452 (11)−0.0052 (13)
O20.1034 (14)0.1289 (18)0.0462 (10)−0.0080 (13)0.0236 (10)−0.0058 (11)
C70.0579 (12)0.0619 (13)0.0471 (12)−0.0052 (10)0.0158 (9)0.0001 (10)
C80.0590 (13)0.0936 (18)0.0433 (12)−0.0005 (12)0.0122 (10)−0.0002 (12)
C20.0553 (13)0.0729 (15)0.0680 (15)−0.0135 (11)0.0141 (11)−0.0142 (12)
C30.0628 (14)0.0727 (15)0.0639 (15)−0.0098 (12)0.0192 (12)−0.0175 (12)
C50.0508 (12)0.0765 (16)0.0612 (15)−0.0081 (11)0.0082 (10)−0.0097 (12)
C60.0572 (13)0.0746 (16)0.0500 (13)−0.0030 (11)0.0099 (10)−0.0063 (11)
C120.0811 (18)0.106 (2)0.094 (2)−0.0108 (16)0.0447 (16)−0.0271 (17)
Geometric parameters (Å, º)
S1—C101.709 (2)N1—C101.429 (3)
S1—C71.717 (2)C4—C51.380 (3)
C1—C21.384 (3)C4—C31.381 (3)
C1—C61.389 (3)C7—C81.365 (3)
C1—N21.414 (3)C8—H80.9300
N2—C111.268 (3)C2—C31.372 (3)
C11—C71.449 (3)C2—H20.9300
C11—H110.9300C3—H30.9300
C9—C101.350 (3)C5—C61.370 (3)
C9—C81.400 (3)C5—H50.9300
C9—H90.9300C6—H60.9300
O3—C41.366 (3)C12—H12A0.9600
O3—C121.420 (3)C12—H12B0.9600
N1—O11.214 (3)C12—H12C0.9600
N1—O21.232 (3)
C10—S1—C789.19 (10)C11—C7—S1119.49 (17)
C2—C1—C6117.6 (2)C7—C8—C9113.0 (2)
C2—C1—N2124.5 (2)C7—C8—H8123.5
C6—C1—N2117.8 (2)C9—C8—H8123.5
C11—N2—C1119.9 (2)C3—C2—C1121.7 (2)
N2—C11—C7120.3 (2)C3—C2—H2119.2
N2—C11—H11119.9C1—C2—H2119.2
C7—C11—H11119.9C2—C3—C4119.8 (2)
C10—C9—C8110.4 (2)C2—C3—H3120.1
C10—C9—H9124.8C4—C3—H3120.1
C8—C9—H9124.8C6—C5—C4120.4 (2)
C4—O3—C12118.2 (2)C6—C5—H5119.8
O1—N1—O2124.1 (2)C4—C5—H5119.8
O1—N1—C10118.6 (2)C5—C6—C1121.2 (2)
O2—N1—C10117.3 (2)C5—C6—H6119.4
C9—C10—N1125.7 (2)C1—C6—H6119.4
C9—C10—S1114.89 (17)O3—C12—H12A109.5
N1—C10—S1119.41 (18)O3—C12—H12B109.5
O3—C4—C5116.0 (2)H12A—C12—H12B109.5
O3—C4—C3124.7 (2)O3—C12—H12C109.5
C5—C4—C3119.3 (2)H12A—C12—H12C109.5
C8—C7—C11128.1 (2)H12B—C12—H12C109.5
C8—C7—S1112.44 (16)
C2—C1—N2—C1130.4 (4)C10—S1—C7—C80.3 (2)
C6—C1—N2—C11−153.0 (2)C10—S1—C7—C11−179.7 (2)
C1—N2—C11—C7−178.1 (2)C11—C7—C8—C9179.8 (2)
C8—C9—C10—N1−178.2 (2)S1—C7—C8—C9−0.2 (3)
C8—C9—C10—S10.3 (3)C10—C9—C8—C7−0.1 (3)
O1—N1—C10—C9−2.1 (4)C6—C1—C2—C32.4 (4)
O2—N1—C10—C9177.6 (3)N2—C1—C2—C3178.9 (2)
O1—N1—C10—S1179.5 (2)C1—C2—C3—C4−0.6 (4)
O2—N1—C10—S1−0.8 (3)O3—C4—C3—C2179.6 (2)
C7—S1—C10—C9−0.4 (2)C5—C4—C3—C2−1.0 (4)
C7—S1—C10—N1178.2 (2)O3—C4—C5—C6−179.8 (2)
C12—O3—C4—C5178.8 (2)C3—C4—C5—C60.8 (4)
C12—O3—C4—C3−1.8 (4)C4—C5—C6—C11.0 (4)
N2—C11—C7—C8−176.2 (2)C2—C1—C6—C5−2.6 (4)
N2—C11—C7—S13.8 (3)N2—C1—C6—C5−179.4 (2)
Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.483.292 (3)146
C9—H9···O3ii0.932.403.273 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2260).
  • Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2, pp. 61, 219, 1023, 1127. Oxford: Pergamon.
  • Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed., pp. 386–387, 435. Ithaca: Cornell University Press.
  • Layer, R. W. (1963). Chem. Rev. 63, 489–510.
  • Özdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography