PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Oct 1, 2012; 68(Pt 10): m1316–m1317.
Published online Sep 29, 2012. doi:  10.1107/S1600536812040603
PMCID: PMC3470182
μ2-m-Xylylenebis(salicylaldiminato)-bis­(η4-1,5-cyclo­octa­diene)dirhodium(I) dichloro­methane solvate
Stacie Gregory,a Ravi K. Laxman,a Frank R. Fronczek,a* Andrew W. Maverick,a and Steven F. Watkinsa
aDepartment of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804 USA
Correspondence e-mail: ffroncz/at/lsu.edu
Received August 23, 2012; Accepted September 25, 2012.
In the title solvate, [Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2, each organometallic mol­ecule is composed of two RhI cations, the tetra­dentate dianion α,α′-bis­(salicylaldiminato)-m-xylene and two 1,5-cyclo­octa­diene (COD) ligands. Each RhI atom is coordinated by one O atom [Rh—O = 2.044 (2) and 2.026 (2) Å], one N atom [Rh—N = 2.083 (2) and 2.090 (2) Å], and one COD ligand via two η2-bonds, each directed toward the mid-point of a C=C bond (Cg): Rh—Cg = 2.007 (2), 2.013 (2), 2.000 (2) and 2.021 (2) Å. Each RhI atom has a quasi-square-planar coordination geometry, with average r.m.s. deviations of 0.159 (1) and 0.204 (1) Å from the mean planes defined by Rh and the termini of its four coordinating bonds. The two COD ligands have quasi-C 2 symmetry, twisted from ideal C 2v symmetry by 30.0 (3) and −33.1 (3)°, and are quasi-enanti­omers of one another. The intra­molecular Rh(...)Rh distance of 5.9432 (3) Å suggests that there is no direct metal–metal inter­action.
Related literature  
For related structures, see: Mosae Selvakumar et al. (2011 [triangle]); Maverick et al. (2005 [triangle]); Nakamura et al. (2001 [triangle]). For the synthesis, see: Brunner & Fisch (1987 [triangle]). For the Universal Force Field procedure, see: Rappe et al. (1992 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-m1316-scheme1.jpg Object name is e-68-m1316-scheme1.jpg
Crystal data  
  • [Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2
  • M r = 849.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-m1316-efi1.jpg
  • a = 16.0829 (4) Å
  • b = 18.8607 (4) Å
  • c = 11.2352 (2) Å
  • β = 99.081 (1)°
  • V = 3365.31 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 90 K
  • 0.30 × 0.12 × 0.12 mm
Data collection  
  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997 [triangle]) T min = 0.631, T max = 0.912
  • 17250 measured reflections
  • 10328 independent reflections
  • 8682 reflections with I > 2σ(I)
  • R int = 0.025
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.077
  • S = 1.02
  • 10328 reflections
  • 425 parameters
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.96 e Å−3
Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and GAUSSIAN09 (Frisch et al., 2009 [triangle]).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040603/cv5334sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040603/cv5334Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. Part of this work was also supported by an ACS–PRF grant to AWM.
supplementary crystallographic information
Comment
Schiff-base ligands such as SIXH2 (C22H20N2O2, CAS 51540–97–7, Maverick et al., 2005) are typically formed by condensation of a primary amine with an aldehyde, resulting in an imine, R1HC=N—R2, which is particularly useful for binding metal ions. The title compound, (SIX)Rh2(COD)2.DCM, C38H42N2O2Rh2.CH2Cl2, consists of one DCM molecule for each organometallic dimer. The latter is composed of tetradentate dianion α,α'-bis(salicylimino)-m-xylene (SIX) coordinated to two Rh(I) ions. Each Rh is bonded to an oxygen (Rh1—O1 = 2.044 (2), Rh2—O2 = 2.026 (2) Å), a nitrogen (Rh1—N1 = 2.083 (2), Rh2—N2 = 2.090 (2) Å), and a 1,5-cyclooctadiene (COD) ligand via two η2-bonds (each directed toward the center of a C═C bond): Rh1—(C1 & C2) = 2.007 (2), Rh1— (C5 & C6) = 2.013 (2), Rh2—(C9 & C10) = 2.000 (2), Rh2—(C13 & C14) = 2.021 (2) Å.
Each COD has quasi-C2 molecular symmetry as judged by close equivalencies of putatively equal intraannular bond lengths, bond angles and torsion angles. One measure of the twist of each ring from idealized C2v molecular symmetry is the torsion angle of four atom-pair centroids: C1 & C2, C3 & C8, C4 & C7, C5 & C6 (+30.0 (3)°) and C9 & C10, C11 & C16, C12 & C15, C13 & C14 (-33.1 (3)°). The signs of the two twist angles, together with the signs of equivalent intraannular torsion angles, indicates that the two COD moieties are near enantiomorphs. The observed molecular measurements are very close to those for the minimum energy conformer calculated in Gaussian09 (Frisch et al., 2009) using the UFF procedure (Rappe et al., 1992). This conformer has exact C2 symmetry and twist angle ±30.8°.
The four bonds about each Rh form a quasi-square planar environment. For example, deviations δr.m.s. from the mean planes defined by each metal atom and the termini of its four bonds are Rh1: 0.159 (1) and Rh2: 0.204 (1) Å. The intramolecular Rh···Rh distance of 5.943 (1) Å suggests that there is no direct metal-metal interaction.
Experimental
The synthesis of (SIX)Rh2(COD)2 was similar to that employed for (salicylimino)Rh(COD) complexes (Brunner & Fisch, 1987). Rh2(COD)2Cl2 was suspended in diethyl ether and a stoichiometric amount of solid SIXH2 (Maverick et al., 2005) was added. The mixture was cooled to 0 °C, a slight excess of 1M NaOH(aq) was added, and the mixture stirred for 1 h. The organic layer was dried over anhydrous NaSO4, filtered, and the solvent was removed to give bright yellow flaky solid. Crystals were obtained by slow evaporation from dichloromethane.
Refinement
All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (Csp2) and 0.99 (Csp3) Å, and Uiso=1.2Ueq, thereafter refined as riding.
Figures
Fig. 1.
Fig. 1.
View of (I) showing the atomic labeling and 50% probability displacement ellipsoids. The solvent molecule and H atoms were omitted for clarity.
Crystal data
[Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2F(000) = 1728
Mr = 849.48Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9881 reflections
a = 16.0829 (4) Åθ = 2.6–31.0°
b = 18.8607 (4) ŵ = 1.18 mm1
c = 11.2352 (2) ÅT = 90 K
β = 99.081 (1)°Lath, yellow
V = 3365.31 (13) Å30.30 × 0.12 × 0.12 mm
Z = 4
Data collection
Nonius KappaCCD diffractometer10328 independent reflections
Radiation source: Enraf Nonius FR5908682 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 30.8°, θmin = 2.6°
CCD rotation images, thick slices scansh = −23→23
Absorption correction: multi-scan (HKLSCALEPACK; Otwinowski & Minor 1997)k = −27→20
Tmin = 0.631, Tmax = 0.912l = −15→15
17250 measured reflections
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077w = 1/[σ2(Fo2) + (0.0322P)2 + 4.6131P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
10328 reflectionsΔρmax = 0.93 e Å3
425 parametersΔρmin = −0.96 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00049 (10)
Primary atom site location: structure-invariant direct methods
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
C10.32235 (14)0.67047 (12)0.42132 (19)0.0144 (4)
H10.3160.64930.49610.017*
C20.40469 (14)0.68544 (12)0.40159 (19)0.0144 (4)
H20.45040.67140.46110.017*
C30.42401 (15)0.72324 (13)0.2890 (2)0.0180 (4)
H3A0.47440.75350.31110.022*
H3B0.37610.75450.25730.022*
C40.43978 (15)0.67113 (13)0.1897 (2)0.0183 (4)
H4A0.42260.69360.110.022*
H4B0.50080.66080.19860.022*
C50.39205 (15)0.60237 (12)0.19427 (18)0.0147 (4)
H50.42240.55940.19110.018*
C60.30668 (15)0.59744 (12)0.20276 (18)0.0150 (4)
H60.28320.55160.20850.018*
C70.24899 (15)0.66143 (13)0.2033 (2)0.0181 (4)
H7A0.19210.64920.16080.022*
H7B0.27090.7010.15940.022*
C80.24272 (14)0.68541 (13)0.3328 (2)0.0179 (4)
H8A0.23090.73690.33250.022*
H8B0.19480.66070.36020.022*
C9−0.03645 (14)0.67669 (13)0.53838 (19)0.0156 (4)
H9−0.040.63010.56950.019*
C100.04403 (14)0.70502 (12)0.53404 (19)0.0148 (4)
H100.09150.67720.56660.018*
C110.06048 (15)0.77664 (13)0.4812 (2)0.0169 (4)
H11A0.12040.77950.4710.02*
H11B0.04990.81430.53830.02*
C120.00494 (15)0.79022 (13)0.3585 (2)0.0192 (4)
H12A−0.04820.81320.37180.023*
H12B0.03450.8230.31050.023*
C13−0.01528 (15)0.72200 (13)0.28883 (19)0.0169 (4)
H130.02420.70590.24020.02*
C14−0.08689 (14)0.68111 (13)0.2903 (2)0.0168 (4)
H14−0.09360.64030.24020.02*
C15−0.15524 (15)0.69641 (14)0.3656 (2)0.0206 (5)
H15A−0.19130.65390.36660.025*
H15B−0.1910.73570.32830.025*
C16−0.11809 (15)0.71664 (14)0.4959 (2)0.0198 (5)
H16A−0.10710.76830.50040.024*
H16B−0.15940.70550.54980.024*
C170.40803 (14)0.58867 (13)0.65856 (19)0.0156 (4)
H17A0.42150.63720.63390.019*
H17B0.45470.57250.72070.019*
C180.32686 (14)0.59036 (12)0.71220 (18)0.0128 (4)
C190.32798 (14)0.61215 (12)0.83111 (19)0.0149 (4)
H190.37920.62780.87770.018*
C200.25437 (15)0.61109 (13)0.88182 (19)0.0175 (4)
H200.25550.62610.96280.021*
C210.17942 (14)0.58825 (12)0.81466 (19)0.0158 (4)
H210.12980.58630.85060.019*
C220.17638 (14)0.56802 (12)0.69440 (19)0.0133 (4)
C230.25022 (14)0.56963 (12)0.64469 (19)0.0136 (4)
H230.24850.55630.56280.016*
C240.09392 (14)0.54057 (13)0.62580 (19)0.0157 (4)
H24A0.08820.48980.64560.019*
H24B0.0470.56640.65370.019*
C250.40126 (14)0.47439 (13)0.5820 (2)0.0157 (4)
H250.41120.46480.66610.019*
C260.38851 (14)0.41316 (12)0.5056 (2)0.0154 (4)
C270.38728 (13)0.41557 (12)0.3777 (2)0.0144 (4)
C280.38042 (15)0.34953 (13)0.3159 (2)0.0181 (4)
H280.38380.34880.23230.022*
C290.36906 (15)0.28658 (13)0.3732 (2)0.0206 (5)
H290.36360.24370.32830.025*
C300.36537 (16)0.28506 (13)0.4979 (2)0.0221 (5)
H300.35540.24190.5370.027*
C310.37645 (15)0.34719 (13)0.5613 (2)0.0193 (4)
H310.37610.34620.64570.023*
C320.12119 (14)0.49715 (12)0.4418 (2)0.0157 (4)
H320.1480.46180.49470.019*
C330.12575 (14)0.48665 (12)0.3159 (2)0.0157 (4)
C340.17486 (15)0.42879 (13)0.2857 (2)0.0193 (4)
H340.2040.40040.34870.023*
C350.18162 (16)0.41255 (13)0.1683 (2)0.0215 (5)
H350.2150.37360.15040.026*
C360.13822 (16)0.45477 (14)0.0750 (2)0.0219 (5)
H360.14190.4438−0.00650.026*
C370.09040 (15)0.51187 (13)0.1008 (2)0.0191 (4)
H370.06240.540.03660.023*
C380.08211 (14)0.52949 (13)0.22172 (19)0.0161 (4)
N10.40120 (11)0.54087 (10)0.55282 (16)0.0130 (3)
N20.08572 (12)0.54799 (11)0.49311 (16)0.0144 (3)
O10.39194 (10)0.47352 (9)0.31685 (13)0.0155 (3)
O20.03491 (11)0.58322 (9)0.23851 (14)0.0174 (3)
Rh10.379269 (10)0.575178 (9)0.374373 (14)0.01104 (5)
Rh20.017893 (10)0.629409 (9)0.395686 (14)0.01219 (5)
C390.35225 (17)0.44841 (14)−0.0064 (2)0.0236 (5)
H39A0.32580.44640.06730.028*
H39B0.35660.4988−0.02910.028*
Cl10.28848 (5)0.40257 (4)−0.12430 (7)0.03484 (16)
Cl20.45414 (4)0.41086 (4)0.02361 (6)0.03307 (16)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
C10.0170 (10)0.0127 (10)0.0140 (9)0.0003 (8)0.0040 (8)−0.0027 (8)
C20.0174 (10)0.0132 (10)0.0127 (9)0.0001 (8)0.0029 (8)−0.0017 (8)
C30.0198 (11)0.0155 (10)0.0195 (11)−0.0041 (9)0.0057 (8)−0.0009 (8)
C40.0216 (11)0.0188 (11)0.0159 (10)−0.0029 (9)0.0076 (8)−0.0007 (8)
C50.0202 (11)0.0146 (10)0.0091 (9)0.0011 (8)0.0018 (8)−0.0006 (8)
C60.0200 (11)0.0153 (10)0.0089 (9)0.0004 (8)−0.0009 (8)0.0009 (8)
C70.0166 (10)0.0201 (11)0.0167 (10)0.0016 (9)0.0004 (8)0.0018 (9)
C80.0162 (10)0.0188 (11)0.0192 (10)0.0017 (9)0.0040 (8)−0.0001 (9)
C90.0167 (10)0.0175 (11)0.0127 (9)−0.0003 (8)0.0030 (8)−0.0005 (8)
C100.0160 (10)0.0174 (10)0.0108 (9)0.0000 (8)0.0015 (7)−0.0008 (8)
C110.0172 (10)0.0185 (11)0.0149 (10)−0.0033 (9)0.0016 (8)−0.0008 (8)
C120.0220 (11)0.0175 (11)0.0175 (10)−0.0022 (9)0.0015 (9)0.0006 (9)
C130.0185 (10)0.0190 (11)0.0122 (9)0.0023 (9)−0.0007 (8)0.0031 (8)
C140.0162 (10)0.0187 (11)0.0136 (10)0.0009 (8)−0.0033 (8)−0.0002 (8)
C150.0147 (10)0.0236 (12)0.0223 (11)0.0009 (9)−0.0009 (8)0.0004 (9)
C160.0154 (10)0.0247 (12)0.0199 (11)0.0007 (9)0.0042 (8)−0.0008 (9)
C170.0139 (10)0.0221 (11)0.0105 (9)−0.0023 (8)0.0013 (7)−0.0032 (8)
C180.0133 (9)0.0148 (10)0.0108 (9)−0.0005 (8)0.0031 (7)0.0011 (7)
C190.0162 (10)0.0174 (10)0.0105 (9)0.0012 (8)−0.0003 (8)−0.0005 (8)
C200.0229 (11)0.0203 (11)0.0092 (9)0.0040 (9)0.0023 (8)−0.0007 (8)
C210.0161 (10)0.0197 (11)0.0121 (9)0.0040 (8)0.0034 (8)0.0026 (8)
C220.0130 (9)0.0147 (10)0.0122 (9)0.0015 (8)0.0020 (7)0.0027 (7)
C230.0143 (10)0.0158 (10)0.0110 (9)−0.0008 (8)0.0026 (7)0.0007 (8)
C240.0130 (10)0.0214 (11)0.0128 (9)−0.0018 (8)0.0021 (7)0.0032 (8)
C250.0125 (10)0.0196 (11)0.0150 (10)0.0003 (8)0.0021 (8)0.0011 (8)
C260.0128 (10)0.0153 (10)0.0179 (10)0.0017 (8)0.0017 (8)0.0021 (8)
C270.0104 (9)0.0143 (10)0.0185 (10)0.0007 (8)0.0026 (8)0.0005 (8)
C280.0169 (11)0.0162 (11)0.0218 (11)0.0006 (8)0.0048 (8)−0.0021 (9)
C290.0180 (11)0.0148 (11)0.0289 (12)0.0002 (9)0.0041 (9)−0.0018 (9)
C300.0222 (12)0.0162 (11)0.0288 (12)−0.0007 (9)0.0066 (10)0.0050 (9)
C310.0183 (11)0.0184 (11)0.0215 (11)0.0012 (9)0.0040 (9)0.0050 (9)
C320.0122 (9)0.0180 (11)0.0157 (10)−0.0035 (8)−0.0013 (8)0.0001 (8)
C330.0124 (9)0.0175 (10)0.0173 (10)−0.0041 (8)0.0026 (8)−0.0021 (8)
C340.0144 (10)0.0184 (11)0.0247 (11)−0.0029 (9)0.0018 (9)−0.0014 (9)
C350.0181 (11)0.0199 (12)0.0274 (12)−0.0034 (9)0.0061 (9)−0.0089 (9)
C360.0210 (12)0.0261 (13)0.0195 (11)−0.0054 (10)0.0057 (9)−0.0082 (9)
C370.0180 (11)0.0229 (12)0.0163 (10)−0.0043 (9)0.0023 (8)−0.0034 (9)
C380.0129 (10)0.0199 (11)0.0154 (10)−0.0041 (8)0.0015 (8)−0.0030 (8)
N10.0102 (8)0.0178 (9)0.0108 (8)−0.0006 (7)0.0018 (6)−0.0019 (7)
N20.0120 (8)0.0183 (9)0.0125 (8)−0.0030 (7)0.0007 (6)0.0013 (7)
O10.0190 (8)0.0139 (7)0.0141 (7)0.0012 (6)0.0042 (6)−0.0003 (6)
O20.0192 (8)0.0197 (8)0.0130 (7)0.0020 (6)0.0017 (6)−0.0014 (6)
Rh10.01149 (8)0.01228 (8)0.00945 (8)−0.00042 (6)0.00196 (5)−0.00103 (6)
Rh20.01157 (8)0.01501 (8)0.00967 (8)−0.00147 (6)0.00068 (6)−0.00002 (6)
C390.0268 (13)0.0208 (12)0.0216 (11)0.0053 (10)−0.0014 (9)−0.0037 (9)
Cl10.0298 (3)0.0381 (4)0.0335 (3)0.0075 (3)−0.0045 (3)−0.0158 (3)
Cl20.0229 (3)0.0498 (4)0.0269 (3)0.0069 (3)0.0051 (2)−0.0056 (3)
Geometric parameters (Å, º)
C1—C21.405 (3)C17—H17B0.99
C1—C81.519 (3)C18—C191.395 (3)
C1—Rh12.121 (2)C18—C231.397 (3)
C1—H10.95C19—C201.393 (3)
C2—C31.526 (3)C19—H190.95
C2—Rh12.132 (2)C20—C211.386 (3)
C2—H20.95C20—H200.95
C3—C41.538 (3)C21—C221.397 (3)
C3—H3A0.99C21—H210.95
C3—H3B0.99C22—C231.390 (3)
C4—C51.512 (3)C22—C241.516 (3)
C4—H4A0.99C23—H230.95
C4—H4B0.99C24—N21.482 (3)
C5—C61.394 (3)C24—H24A0.99
C5—Rh12.129 (2)C24—H24B0.99
C5—H50.95C25—N11.296 (3)
C6—C71.523 (3)C25—C261.434 (3)
C6—Rh12.132 (2)C25—H250.95
C6—H60.95C26—C311.420 (3)
C7—C81.541 (3)C26—C271.434 (3)
C7—H7A0.99C27—O11.298 (3)
C7—H7B0.99C27—C281.422 (3)
C8—H8A0.99C28—C291.376 (3)
C8—H8B0.99C28—H280.95
C9—C101.408 (3)C29—C301.413 (3)
C9—C161.524 (3)C29—H290.95
C9—Rh22.138 (2)C30—C311.368 (3)
C9—H90.95C30—H300.95
C10—C111.516 (3)C31—H310.95
C10—Rh22.102 (2)C32—N21.297 (3)
C10—H100.95C32—C331.442 (3)
C11—C121.540 (3)C32—H320.95
C11—H11A0.99C33—C341.419 (3)
C11—H11B0.99C33—C381.425 (3)
C12—C131.515 (3)C34—C351.375 (3)
C12—H12A0.99C34—H340.95
C12—H12B0.99C35—C361.411 (4)
C13—C141.388 (3)C35—H350.95
C13—Rh22.139 (2)C36—C371.380 (4)
C13—H130.95C36—H360.95
C14—C151.517 (3)C37—C381.425 (3)
C14—Rh22.136 (2)C37—H370.95
C14—H140.95C38—O21.298 (3)
C15—C161.540 (3)N1—Rh12.0831 (18)
C15—H15A0.99N2—Rh22.0903 (19)
C15—H15B0.99O1—Rh12.0437 (16)
C16—H16A0.99O2—Rh22.0260 (16)
C16—H16B0.99C39—Cl11.768 (3)
C17—N11.482 (3)C39—Cl21.768 (3)
C17—C181.522 (3)C39—H39A0.99
C17—H17A0.99C39—H39B0.99
C2—C1—C8125.3 (2)C20—C19—H19119.9
C2—C1—Rh171.13 (12)C18—C19—H19119.9
C8—C1—Rh1110.28 (14)C21—C20—C19120.3 (2)
C2—C1—H1117.4C21—C20—H20119.9
C8—C1—H1117.4C19—C20—H20119.9
Rh1—C1—H188.6C20—C21—C22120.4 (2)
C1—C2—C3123.0 (2)C20—C21—H21119.8
C1—C2—Rh170.28 (13)C22—C21—H21119.8
C3—C2—Rh1113.35 (14)C23—C22—C21118.7 (2)
C1—C2—H2118.5C23—C22—C24122.51 (19)
C3—C2—H2118.5C21—C22—C24118.62 (19)
Rh1—C2—H286.5C22—C23—C18121.6 (2)
C2—C3—C4112.42 (19)C22—C23—H23119.2
C2—C3—H3A109.1C18—C23—H23119.2
C4—C3—H3A109.1N2—C24—C22114.26 (17)
C2—C3—H3B109.1N2—C24—H24A108.7
C4—C3—H3B109.1C22—C24—H24A108.7
H3A—C3—H3B107.9N2—C24—H24B108.7
C5—C4—C3112.38 (18)C22—C24—H24B108.7
C5—C4—H4A109.1H24A—C24—H24B107.6
C3—C4—H4A109.1N1—C25—C26129.3 (2)
C5—C4—H4B109.1N1—C25—H25115.4
C3—C4—H4B109.1C26—C25—H25115.4
H4A—C4—H4B107.9C31—C26—C27119.2 (2)
C6—C5—C4124.8 (2)C31—C26—C25117.3 (2)
C6—C5—Rh171.03 (12)C27—C26—C25123.5 (2)
C4—C5—Rh1111.38 (14)O1—C27—C28119.1 (2)
C6—C5—H5117.6O1—C27—C26124.2 (2)
C4—C5—H5117.6C28—C27—C26116.7 (2)
Rh1—C5—H587.6C29—C28—C27122.2 (2)
C5—C6—C7123.7 (2)C29—C28—H28118.9
C5—C6—Rh170.76 (12)C27—C28—H28118.9
C7—C6—Rh1113.52 (14)C28—C29—C30120.7 (2)
C5—C6—H6118.2C28—C29—H29119.6
C7—C6—H6118.2C30—C29—H29119.6
Rh1—C6—H685.8C31—C30—C29118.4 (2)
C6—C7—C8111.54 (18)C31—C30—H30120.8
C6—C7—H7A109.3C29—C30—H30120.8
C8—C7—H7A109.3C30—C31—C26122.5 (2)
C6—C7—H7B109.3C30—C31—H31118.8
C8—C7—H7B109.3C26—C31—H31118.8
H7A—C7—H7B108N2—C32—C33129.2 (2)
C1—C8—C7112.93 (18)N2—C32—H32115.4
C1—C8—H8A109C33—C32—H32115.4
C7—C8—H8A109C34—C33—C38119.1 (2)
C1—C8—H8B109C34—C33—C32117.2 (2)
C7—C8—H8B109C38—C33—C32123.7 (2)
H8A—C8—H8B107.8C35—C34—C33122.1 (2)
C10—C9—C16123.6 (2)C35—C34—H34118.9
C10—C9—Rh269.24 (12)C33—C34—H34118.9
C16—C9—Rh2113.92 (15)C34—C35—C36118.8 (2)
C10—C9—H9118.2C34—C35—H35120.6
C16—C9—H9118.2C36—C35—H35120.6
Rh2—C9—H986.9C37—C36—C35120.7 (2)
C9—C10—C11124.7 (2)C37—C36—H36119.6
C9—C10—Rh271.98 (13)C35—C36—H36119.6
C11—C10—Rh2109.97 (14)C36—C37—C38121.4 (2)
C9—C10—H10117.6C36—C37—H37119.3
C11—C10—H10117.6C38—C37—H37119.3
Rh2—C10—H1088O2—C38—C33124.5 (2)
C10—C11—C12112.72 (19)O2—C38—C37117.8 (2)
C10—C11—H11A109C33—C38—C37117.8 (2)
C12—C11—H11A109C25—N1—C17112.87 (18)
C10—C11—H11B109C25—N1—Rh1122.51 (15)
C12—C11—H11B109C17—N1—Rh1124.24 (15)
H11A—C11—H11B107.8C32—N2—C24113.69 (19)
C13—C12—C11111.59 (19)C32—N2—Rh2122.71 (15)
C13—C12—H12A109.3C24—N2—Rh2123.52 (15)
C11—C12—H12A109.3C27—O1—Rh1127.33 (14)
C13—C12—H12B109.3C38—O2—Rh2128.69 (14)
C11—C12—H12B109.3O1—Rh1—N190.16 (7)
H12A—C12—H12B108O1—Rh1—C1160.40 (8)
C14—C13—C12125.2 (2)N1—Rh1—C192.18 (8)
C14—C13—Rh270.94 (13)O1—Rh1—C584.03 (7)
C12—C13—Rh2112.91 (15)N1—Rh1—C5164.29 (8)
C14—C13—H13117.4C1—Rh1—C598.19 (8)
C12—C13—H13117.4O1—Rh1—C688.08 (8)
Rh2—C13—H1386.1N1—Rh1—C6156.47 (8)
C13—C14—C15125.2 (2)C1—Rh1—C682.06 (9)
C13—C14—Rh271.15 (13)C5—Rh1—C638.20 (9)
C15—C14—Rh2110.83 (15)O1—Rh1—C2159.06 (7)
C13—C14—H14117.4N1—Rh1—C299.52 (8)
C15—C14—H14117.4C1—Rh1—C238.59 (8)
Rh2—C14—H1488C5—Rh1—C281.73 (8)
C14—C15—C16111.77 (19)C6—Rh1—C290.16 (9)
C14—C15—H15A109.3O2—Rh2—N290.54 (7)
C16—C15—H15A109.3O2—Rh2—C10153.81 (8)
C14—C15—H15B109.3N2—Rh2—C1094.83 (8)
C16—C15—H15B109.3O2—Rh2—C1485.21 (8)
H15A—C15—H15B107.9N2—Rh2—C14157.89 (8)
C9—C16—C15111.17 (19)C10—Rh2—C1498.53 (9)
C9—C16—H16A109.4O2—Rh2—C9163.81 (8)
C15—C16—H16A109.4N2—Rh2—C998.92 (8)
C9—C16—H16B109.4C10—Rh2—C938.78 (8)
C15—C16—H16B109.4C14—Rh2—C981.09 (9)
H16A—C16—H16B108O2—Rh2—C1385.29 (8)
N1—C17—C18111.75 (18)N2—Rh2—C13163.18 (8)
N1—C17—H17A109.3C10—Rh2—C1382.20 (9)
C18—C17—H17A109.3C14—Rh2—C1337.91 (9)
N1—C17—H17B109.3C9—Rh2—C1389.14 (9)
C18—C17—H17B109.3Cl1—C39—Cl2110.95 (14)
H17A—C17—H17B107.9Cl1—C39—H39A109.4
C19—C18—C23118.6 (2)Cl2—C39—H39A109.4
C19—C18—C17120.20 (19)Cl1—C39—H39B109.4
C23—C18—C17121.16 (18)Cl2—C39—H39B109.4
C20—C19—C18120.3 (2)H39A—C39—H39B108
C8—C1—C2—C33.7 (3)C25—N1—Rh1—C5−79.9 (4)
Rh1—C1—C2—C3105.6 (2)C17—N1—Rh1—C5107.7 (3)
C8—C1—C2—Rh1−101.9 (2)C25—N1—Rh1—C673.6 (3)
C1—C2—C3—C4−93.4 (3)C17—N1—Rh1—C6−98.7 (2)
Rh1—C2—C3—C4−12.5 (2)C25—N1—Rh1—C2−173.26 (17)
C2—C3—C4—C529.4 (3)C17—N1—Rh1—C214.36 (17)
C3—C4—C5—C648.7 (3)C2—C1—Rh1—O1−160.82 (19)
C3—C4—C5—Rh1−32.5 (2)C8—C1—Rh1—O1−39.2 (3)
C4—C5—C6—C72.6 (3)C2—C1—Rh1—N1102.58 (13)
Rh1—C5—C6—C7106.0 (2)C8—C1—Rh1—N1−135.81 (15)
C4—C5—C6—Rh1−103.3 (2)C2—C1—Rh1—C5−65.59 (14)
C5—C6—C7—C8−93.9 (2)C8—C1—Rh1—C556.03 (16)
Rh1—C6—C7—C8−12.1 (2)C2—C1—Rh1—C6−100.34 (14)
C2—C1—C8—C746.4 (3)C8—C1—Rh1—C621.28 (15)
Rh1—C1—C8—C7−34.3 (2)C8—C1—Rh1—C2121.6 (2)
C6—C7—C8—C130.5 (3)C6—C5—Rh1—O194.49 (14)
C16—C9—C10—C11−3.4 (3)C4—C5—Rh1—O1−144.64 (17)
Rh2—C9—C10—C11102.2 (2)C6—C5—Rh1—N1163.3 (3)
C16—C9—C10—Rh2−105.6 (2)C4—C5—Rh1—N1−75.8 (3)
C9—C10—C11—C12−45.4 (3)C6—C5—Rh1—C1−65.89 (14)
Rh2—C10—C11—C1236.1 (2)C4—C5—Rh1—C154.98 (17)
C10—C11—C12—C13−31.3 (3)C4—C5—Rh1—C6120.9 (2)
C11—C12—C13—C1493.8 (3)C6—C5—Rh1—C2−100.91 (14)
C11—C12—C13—Rh211.6 (2)C4—C5—Rh1—C219.96 (16)
C12—C13—C14—C15−2.4 (4)C5—C6—Rh1—O1−82.79 (13)
Rh2—C13—C14—C15102.7 (2)C7—C6—Rh1—O1157.97 (17)
C12—C13—C14—Rh2−105.1 (2)C5—C6—Rh1—N1−168.77 (18)
C13—C14—C15—C16−44.8 (3)C7—C6—Rh1—N172.0 (3)
Rh2—C14—C15—C1636.3 (2)C5—C6—Rh1—C1114.19 (14)
C10—C9—C16—C1596.1 (3)C7—C6—Rh1—C1−5.05 (16)
Rh2—C9—C16—C1515.9 (2)C7—C6—Rh1—C5−119.2 (2)
C14—C15—C16—C9−34.0 (3)C5—C6—Rh1—C276.34 (14)
N1—C17—C18—C19158.9 (2)C7—C6—Rh1—C2−42.90 (17)
N1—C17—C18—C23−20.4 (3)C1—C2—Rh1—O1162.04 (18)
C23—C18—C19—C201.9 (3)C3—C2—Rh1—O143.6 (3)
C17—C18—C19—C20−177.5 (2)C1—C2—Rh1—N1−81.46 (13)
C18—C19—C20—C210.1 (4)C3—C2—Rh1—N1160.13 (16)
C19—C20—C21—C22−1.9 (4)C3—C2—Rh1—C1−118.4 (2)
C20—C21—C22—C231.6 (3)C1—C2—Rh1—C5114.39 (14)
C20—C21—C22—C24177.6 (2)C3—C2—Rh1—C5−4.02 (16)
C21—C22—C23—C180.5 (3)C1—C2—Rh1—C676.99 (13)
C24—C22—C23—C18−175.4 (2)C3—C2—Rh1—C6−41.41 (17)
C19—C18—C23—C22−2.2 (3)C38—O2—Rh2—N2−8.29 (19)
C17—C18—C23—C22177.2 (2)C38—O2—Rh2—C1093.8 (2)
C23—C22—C24—N2−27.7 (3)C38—O2—Rh2—C14−166.6 (2)
C21—C22—C24—N2156.5 (2)C38—O2—Rh2—C9−134.3 (3)
N1—C25—C26—C31−168.7 (2)C38—O2—Rh2—C13155.4 (2)
N1—C25—C26—C2711.2 (4)C32—N2—Rh2—O23.22 (18)
C31—C26—C27—O1175.1 (2)C24—N2—Rh2—O2−173.31 (17)
C25—C26—C27—O1−4.7 (3)C32—N2—Rh2—C10−151.12 (18)
C31—C26—C27—C28−4.8 (3)C24—N2—Rh2—C1032.36 (17)
C25—C26—C27—C28175.3 (2)C32—N2—Rh2—C1481.8 (3)
O1—C27—C28—C29−175.2 (2)C24—N2—Rh2—C14−94.8 (3)
C26—C27—C28—C294.8 (3)C32—N2—Rh2—C9170.02 (18)
C27—C28—C29—C30−1.3 (4)C24—N2—Rh2—C9−6.50 (18)
C28—C29—C30—C31−2.4 (4)C32—N2—Rh2—C13−72.1 (3)
C29—C30—C31—C262.2 (4)C24—N2—Rh2—C13111.3 (3)
C27—C26—C31—C301.4 (4)C9—C10—Rh2—O2160.62 (16)
C25—C26—C31—C30−178.7 (2)C11—C10—Rh2—O239.3 (3)
N2—C32—C33—C34175.0 (2)C9—C10—Rh2—N2−98.24 (13)
N2—C32—C33—C38−6.9 (4)C11—C10—Rh2—N2140.46 (15)
C38—C33—C34—C35−0.1 (3)C9—C10—Rh2—C1464.10 (14)
C32—C33—C34—C35178.0 (2)C11—C10—Rh2—C14−57.21 (17)
C33—C34—C35—C36−0.1 (4)C11—C10—Rh2—C9−121.3 (2)
C34—C35—C36—C370.6 (4)C9—C10—Rh2—C1398.42 (14)
C35—C36—C37—C38−1.0 (4)C11—C10—Rh2—C13−22.88 (16)
C34—C33—C38—O2179.4 (2)C13—C14—Rh2—O2−88.47 (14)
C32—C33—C38—O21.3 (4)C15—C14—Rh2—O2150.06 (17)
C34—C33—C38—C37−0.2 (3)C13—C14—Rh2—N2−168.04 (18)
C32—C33—C38—C37−178.2 (2)C15—C14—Rh2—N270.5 (3)
C36—C37—C38—O2−178.9 (2)C13—C14—Rh2—C1065.42 (14)
C36—C37—C38—C330.7 (3)C15—C14—Rh2—C10−56.05 (18)
C26—C25—N1—C17174.0 (2)C13—C14—Rh2—C9100.18 (14)
C26—C25—N1—Rh10.9 (3)C15—C14—Rh2—C9−21.28 (17)
C18—C17—N1—C25−72.5 (2)C15—C14—Rh2—C13−121.5 (2)
C18—C17—N1—Rh1100.54 (19)C10—C9—Rh2—O2−148.3 (3)
C33—C32—N2—C24179.8 (2)C16—C9—Rh2—O2−29.7 (4)
C33—C32—N2—Rh23.0 (3)C10—C9—Rh2—N286.60 (14)
C22—C24—N2—C3283.3 (2)C16—C9—Rh2—N2−154.80 (16)
C22—C24—N2—Rh2−99.9 (2)C16—C9—Rh2—C10118.6 (2)
C28—C27—O1—Rh1167.14 (15)C10—C9—Rh2—C14−115.78 (14)
C26—C27—O1—Rh1−12.8 (3)C16—C9—Rh2—C142.82 (17)
C33—C38—O2—Rh27.2 (3)C10—C9—Rh2—C13−78.57 (14)
C37—C38—O2—Rh2−173.22 (15)C16—C9—Rh2—C1340.03 (17)
C27—O1—Rh1—N118.17 (18)C14—C13—Rh2—O288.26 (14)
C27—O1—Rh1—C1−78.8 (3)C12—C13—Rh2—O2−150.67 (17)
C27—O1—Rh1—C5−176.45 (19)C14—C13—Rh2—N2164.4 (2)
C27—O1—Rh1—C6−138.36 (19)C12—C13—Rh2—N2−74.6 (3)
C27—O1—Rh1—C2136.2 (2)C14—C13—Rh2—C10−114.81 (14)
C25—N1—Rh1—O1−11.91 (17)C12—C13—Rh2—C106.26 (16)
C17—N1—Rh1—O1175.71 (16)C12—C13—Rh2—C14121.1 (2)
C25—N1—Rh1—C1148.62 (18)C14—C13—Rh2—C9−76.52 (14)
C17—N1—Rh1—C1−23.75 (17)C12—C13—Rh2—C944.55 (17)
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5334).
  • Brunner, H. & Fisch, H. J. (1987). Organomet. Chem. 335, 1–14.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Frisch, M. J. et al. (2009). Gaussian09 Gaussian Inc., Wallingford CT, USA.
  • Maverick, A. W., Laxman, R. K., Hawkins, M. A., Martone, D. P. & Fronczek, F. R. (2005). Dalton Trans pp. 200–206. [PubMed]
  • Mosae Selvakumar, P., Nadella, S., Jeya Prathap, K., Kureshy, R. I., Suresh, E. & Subramanian, P. S. (2011). Inorg. Chim. Acta, 375, 106–113.
  • Nakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191–201.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Skiff, W. A. G. III & Skiff, W. M. (1992). J. Am. Chem. Soc. 114, 10024–10035.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography