PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 October 1; 68(Pt 10): m1309.
Published online 2012 September 29. doi:  10.1107/S1600536812038433
PMCID: PMC3470177

(2-Ethyl-2-oxazoline-κN)bis(N-ethyl-N-phenyl­dithio­carbamato-κ2 S,S′)cadmium

Abstract

In the title compound, [Cd(C9H10NS2)2(C5H9NO)], the CdII atom is five-coordinated in a distorted square-pyramidal geometry by four S atoms from two chelating N-ethyl-N-phenyl dithio­carbamate ligands and one N atom from a 2-ethyl-2-oxazoline ligand. Inter­molecular C—H(...)π inter­actions are observed in the crystal structure.

Related literature  

For background to and applications of dithio­carbamates, see: Green et al. (2004 [triangle]); Pickett & O’Brien (2001 [triangle]); Tiekink (2003 [triangle]); Valarmathi et al. (2011 [triangle]). For the synthesis of the parent dithio­carbamate, see: Onwudiwe & Ajibade (2010 [triangle]). For information regarding dithio­carbanate adducts, see: Green & O’Brien (1997 [triangle]); Ivanov et al. (2007 [triangle]); Onwudiwe et al. (2011 [triangle]). For the synthesis and structures of dithio­carbamates incorporating oxazoline mol­ecules, see: Decken et al. (2006 [triangle]); Gossage & Jenkins (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-m1309-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(C9H10NS2)2(C5H9NO)]
  • M r = 604.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-m1309-efi1.jpg
  • a = 10.3119 (2) Å
  • b = 11.4395 (2) Å
  • c = 12.2432 (3) Å
  • α = 84.756 (1)°
  • β = 77.395 (1)°
  • γ = 70.290 (1)°
  • V = 1326.61 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 200 K
  • 0.37 × 0.23 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.75, T max = 0.82
  • 23482 measured reflections
  • 6626 independent reflections
  • 5934 reflections with I > 2σ(I)
  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.054
  • S = 1.06
  • 6626 reflections
  • 292 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038433/hy2583sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038433/hy2583Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812038433/hy2583Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support from North-West University, Potchefstroom, South Africa, is gratefully acknowledged.

supplementary crystallographic information

Comment

One of the attractive features of group 12 dithiocarbamate chemistry is the extensive structural motifs which they display, ranging from monomeric, dimeric, tetrameric, linear polymeric and layered structures (Tiekink, 2003). These compounds tend to reversibly add organic N-, O-, S- and P-donor bases to give heteroligand complexes generally called adducts (Ivanov et al., 2007). Such adducts are of practical interest as they display a wide range of applications (Green et al., 2004; Pickett & O'Brien, 2001; Valarmathi et al., 2011). The molecules are usually highly volatile and are used in improved synthesis of nanoparticulate chalcogenide semiconductors, with good luminescent properties (Green and O'Brien, 1997). As part of our interest in the studies of N-donor adducts of group 12 dithiocarbamates (Onwudiwe et al., 2011), the structure analysis of the title compound was undertaken.

The CdII atom in the title compound is square-pyramidal five coordinate with four S atoms from two N-ethyl-N-phenyl dithiocarbamate ligands and one N atom from a 2-ethyl-2-oxazoline ligand (Fig. 1). The two dithiocarbamates are at an obtuse angle of 130.6 ° to each other and form an angle of 89.8 ° and 85.6 ° with the oxazoline ligand. The Cd atom is 0.7877 (1) Å above the plane formed by the four S atoms. The Cd—S bond lengths vary from 2.5615 (5) to 2.7154 (4) Å while the Cd—N bond length is 2.2564 (14) Å. None of the ethyl groups shows any signifuicant disorder. The dithiocarbamate ethyl groups have intramolecular interactions with the S atoms C18—H18A···S11 and C28—H28A···S21, with contact distances of 2.60 and 2.56 Å respectively. Adjacent molecules are linked by C—H···π interactions (Table 1, Fig. 2). Packing of the title compound is shown in Fig. 3.

Experimental

(N-Ethyl-N-phenyl dithiocarbamate)cadmium (2 mmol, 1.01 g) was suspended in 75 ml of warm dichloromethane (Onwudiwe & Ajibade, 2010). 2-Ethyl-2-oxazoline was dropwise added to the stirring warm mixture. The clear solution obtained after the addition of oxazoline was stirred for 10 h. The colourless solution obtained was filtered and the solvent was removed. The resulting crude product was redissolved in boiling acetone (Decken et al., 2006; Gossage & Jenkins, 2008). After a few days, single crystals suitable for X-ray structure analysis were obtained (m.p. 288–290 °C).

Refinement

H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Selected intermolecular C—H···π contacts (blue dashed lines). [Cg1 is the centroid of the C11–C16 ring. Symmetry code: (i) -x+1, -y, -z+1.]
Fig. 3.
Crystal packing of the title compound, viewed along the c-axis.

Crystal data

[Cd(C9H10NS2)2(C5H9NO)]Z = 2
Mr = 604.18F(000) = 616
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Melting point: 562.15 K
a = 10.3119 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4395 (2) ÅCell parameters from 192 reflections
c = 12.2432 (3) Åθ = 1.7–25.5°
α = 84.756 (1)°µ = 1.16 mm1
β = 77.395 (1)°T = 200 K
γ = 70.290 (1)°Block, colourless
V = 1326.61 (5) Å30.37 × 0.23 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer6626 independent reflections
Radiation source: sealed tube5934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
[var phi] and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −13→13
Tmin = 0.75, Tmax = 0.82k = −15→15
23482 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0233P)2 + 0.6233P] where P = (Fo2 + 2Fc2)/3
6626 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.497101 (12)0.297575 (11)0.710351 (10)0.02896 (4)
S110.70543 (5)0.08672 (4)0.66862 (3)0.03257 (9)
S120.55149 (5)0.24235 (4)0.49921 (3)0.03339 (9)
S210.42738 (4)0.25089 (4)0.93305 (3)0.03282 (9)
S220.23016 (4)0.35727 (4)0.77674 (3)0.03088 (9)
O30.70297 (14)0.58511 (12)0.68191 (11)0.0403 (3)
N10.75835 (14)0.02943 (12)0.45349 (11)0.0269 (3)
N20.16026 (15)0.25674 (15)0.97431 (11)0.0316 (3)
N30.56806 (15)0.46441 (12)0.70659 (11)0.0293 (3)
C110.73383 (17)0.04933 (14)0.34024 (13)0.0263 (3)
C120.81004 (19)0.11050 (16)0.26380 (14)0.0325 (4)
H120.87680.13910.28580.039*
C130.7883 (2)0.12968 (16)0.15508 (15)0.0369 (4)
H130.83940.17250.10240.044*
C140.6923 (2)0.08674 (16)0.12285 (15)0.0357 (4)
H140.67770.10010.04810.043*
C150.61753 (19)0.02427 (15)0.19940 (15)0.0341 (4)
H150.552−0.00560.1770.041*
C160.63808 (18)0.00527 (15)0.30856 (14)0.0303 (3)
H160.587−0.03760.36120.036*
C170.67929 (17)0.11157 (14)0.53306 (13)0.0256 (3)
C180.86741 (19)−0.08783 (16)0.47616 (15)0.0336 (4)
H18A0.9061−0.07650.54020.04*
H18B0.9452−0.10840.410.04*
C190.8089 (2)−0.19382 (18)0.5024 (2)0.0489 (5)
H19A0.7793−0.21080.43640.073*
H19B0.7279−0.17140.56490.073*
H19C0.8815−0.26810.52310.073*
C210.02419 (16)0.28275 (15)0.94601 (13)0.0262 (3)
C22−0.08658 (19)0.38602 (16)0.98745 (15)0.0345 (4)
H22−0.07340.44251.03280.041*
C23−0.2169 (2)0.40647 (19)0.96237 (17)0.0430 (5)
H23−0.29310.47840.98890.052*
C24−0.2363 (2)0.3226 (2)0.89888 (17)0.0453 (5)
H24−0.32660.33570.88350.054*
C25−0.1251 (2)0.2200 (2)0.85763 (16)0.0434 (5)
H25−0.13870.16310.8130.052*
C260.00623 (19)0.19937 (17)0.88082 (14)0.0335 (4)
H260.08310.12870.85230.04*
C270.26380 (16)0.28540 (15)0.90230 (13)0.0258 (3)
C280.1801 (2)0.1855 (2)1.08128 (16)0.0456 (5)
H28A0.28190.14581.07960.055*
H28B0.13750.11891.08780.055*
C290.1152 (3)0.2663 (3)1.18189 (18)0.0654 (7)
H29A0.15470.33411.17470.098*
H29B0.13520.21661.24950.098*
H29C0.01320.30091.18710.098*
C310.4824 (2)0.57458 (17)0.77370 (17)0.0422 (4)
H31A0.46040.55160.85390.051*
H31B0.39330.61690.74760.051*
C320.5742 (2)0.65695 (17)0.75524 (16)0.0389 (4)
H32A0.52870.7370.71910.047*
H32B0.59350.67360.8270.047*
C330.68437 (18)0.47990 (15)0.66044 (14)0.0292 (3)
C340.80295 (19)0.39458 (17)0.58279 (15)0.0366 (4)
H34A0.78990.31240.5860.044*
H34B0.89220.38330.60670.044*
C350.8113 (3)0.4459 (2)0.46306 (18)0.0601 (6)
H35A0.89270.390.41410.09*
H35B0.82140.52830.46030.09*
H35C0.72530.45230.43780.09*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02741 (7)0.03168 (7)0.02647 (6)−0.01143 (5)0.00288 (4)−0.00717 (4)
S110.0394 (2)0.0327 (2)0.02396 (19)−0.00906 (18)−0.00617 (17)−0.00305 (15)
S120.0342 (2)0.0327 (2)0.02624 (19)−0.00064 (17)−0.00540 (17)−0.00694 (16)
S210.0250 (2)0.0492 (2)0.0274 (2)−0.01531 (18)−0.00557 (16)−0.00294 (17)
S220.0253 (2)0.0397 (2)0.02583 (19)−0.01067 (17)−0.00322 (15)0.00416 (16)
O30.0424 (7)0.0316 (6)0.0481 (8)−0.0174 (6)−0.0010 (6)−0.0048 (5)
N10.0295 (7)0.0242 (6)0.0247 (6)−0.0070 (5)−0.0023 (5)−0.0033 (5)
N20.0252 (7)0.0490 (9)0.0226 (6)−0.0160 (6)−0.0039 (5)0.0016 (6)
N30.0298 (7)0.0258 (6)0.0285 (7)−0.0071 (6)0.0002 (6)−0.0040 (5)
C110.0304 (8)0.0216 (7)0.0232 (7)−0.0062 (6)0.0009 (6)−0.0054 (6)
C120.0361 (9)0.0307 (8)0.0315 (8)−0.0155 (7)0.0008 (7)−0.0044 (7)
C130.0431 (10)0.0317 (8)0.0304 (9)−0.0121 (8)0.0024 (7)0.0024 (7)
C140.0423 (10)0.0307 (8)0.0276 (8)−0.0035 (7)−0.0060 (7)−0.0036 (7)
C150.0368 (9)0.0277 (8)0.0374 (9)−0.0069 (7)−0.0096 (7)−0.0083 (7)
C160.0318 (9)0.0257 (7)0.0322 (8)−0.0109 (7)−0.0006 (7)−0.0035 (6)
C170.0271 (8)0.0268 (7)0.0239 (7)−0.0123 (6)−0.0006 (6)−0.0034 (6)
C180.0313 (9)0.0306 (8)0.0329 (9)−0.0040 (7)−0.0024 (7)−0.0046 (7)
C190.0559 (13)0.0295 (9)0.0625 (13)−0.0110 (9)−0.0224 (11)0.0062 (9)
C210.0241 (8)0.0348 (8)0.0213 (7)−0.0136 (6)−0.0017 (6)0.0006 (6)
C220.0343 (9)0.0313 (8)0.0367 (9)−0.0160 (7)0.0046 (7)−0.0029 (7)
C230.0279 (9)0.0395 (10)0.0506 (11)−0.0070 (8)0.0029 (8)0.0120 (8)
C240.0294 (9)0.0681 (14)0.0429 (11)−0.0235 (9)−0.0141 (8)0.0231 (10)
C250.0487 (12)0.0616 (13)0.0332 (9)−0.0317 (10)−0.0142 (8)0.0010 (9)
C260.0340 (9)0.0377 (9)0.0282 (8)−0.0115 (7)−0.0034 (7)−0.0058 (7)
C270.0242 (8)0.0301 (8)0.0231 (7)−0.0095 (6)−0.0014 (6)−0.0062 (6)
C280.0390 (11)0.0690 (14)0.0330 (10)−0.0249 (10)−0.0093 (8)0.0121 (9)
C290.0788 (18)0.099 (2)0.0295 (10)−0.0434 (16)−0.0114 (11)0.0008 (11)
C310.0410 (10)0.0313 (9)0.0446 (11)−0.0061 (8)0.0069 (8)−0.0124 (8)
C320.0496 (11)0.0295 (8)0.0354 (9)−0.0090 (8)−0.0069 (8)−0.0077 (7)
C330.0328 (9)0.0259 (7)0.0281 (8)−0.0102 (7)−0.0048 (7)0.0030 (6)
C340.0323 (9)0.0337 (9)0.0373 (9)−0.0091 (7)0.0042 (7)−0.0010 (7)
C350.0701 (16)0.0582 (14)0.0361 (11)−0.0131 (12)0.0092 (10)−0.0006 (10)

Geometric parameters (Å, º)

Cd1—N32.2563 (14)C19—H19A0.98
Cd1—S222.5615 (4)C19—H19B0.98
Cd1—S122.6121 (4)C19—H19C0.98
Cd1—S112.6354 (5)C21—C261.380 (2)
Cd1—S212.7154 (4)C21—C221.380 (2)
S11—C171.7221 (16)C22—C231.382 (3)
S12—C171.7152 (17)C22—H220.95
S21—C271.7157 (16)C23—C241.378 (3)
S22—C271.7230 (16)C23—H230.95
O3—C331.338 (2)C24—C251.377 (3)
O3—C321.457 (2)C24—H240.95
N1—C171.342 (2)C25—C261.382 (3)
N1—C111.447 (2)C25—H250.95
N1—C181.481 (2)C26—H260.95
N2—C271.341 (2)C28—C291.500 (3)
N2—C211.445 (2)C28—H28A0.99
N2—C281.493 (2)C28—H28B0.99
N3—C331.272 (2)C29—H29A0.98
N3—C311.472 (2)C29—H29B0.98
C11—C121.383 (2)C29—H29C0.98
C11—C161.385 (2)C31—C321.518 (3)
C12—C131.384 (3)C31—H31A0.99
C12—H120.95C31—H31B0.99
C13—C141.382 (3)C32—H32A0.99
C13—H130.95C32—H32B0.99
C14—C151.385 (3)C33—C341.486 (2)
C14—H140.95C34—C351.524 (3)
C15—C161.385 (2)C34—H34A0.99
C15—H150.95C34—H34B0.99
C16—H160.95C35—H35A0.98
C18—C191.508 (3)C35—H35B0.98
C18—H18A0.99C35—H35C0.98
C18—H18B0.99
N3—Cd1—S22110.83 (4)C22—C21—N2120.50 (15)
N3—Cd1—S12103.12 (4)C21—C22—C23119.38 (17)
S22—Cd1—S12106.646 (14)C21—C22—H22120.3
N3—Cd1—S11113.83 (4)C23—C22—H22120.3
S22—Cd1—S11134.900 (15)C24—C23—C22120.08 (18)
S12—Cd1—S1169.059 (13)C24—C23—H23120.0
N3—Cd1—S21102.68 (4)C22—C23—H23120.0
S22—Cd1—S2168.706 (13)C25—C24—C23120.13 (17)
S12—Cd1—S21153.616 (15)C25—C24—H24119.9
S11—Cd1—S2195.366 (14)C23—C24—H24119.9
C17—S11—Cd185.11 (6)C24—C25—C26120.36 (18)
C17—S12—Cd185.98 (5)C24—C25—H25119.8
C27—S21—Cd182.05 (5)C26—C25—H25119.8
C27—S22—Cd186.74 (5)C21—C26—C25119.11 (17)
C33—O3—C32106.82 (13)C21—C26—H26120.4
C17—N1—C11120.28 (13)C25—C26—H26120.4
C17—N1—C18123.19 (14)N2—C27—S21121.16 (12)
C11—N1—C18116.43 (13)N2—C27—S22118.67 (12)
C27—N2—C21120.66 (13)S21—C27—S22120.16 (9)
C27—N2—C28123.45 (14)N2—C28—C29112.39 (19)
C21—N2—C28115.58 (13)N2—C28—H28A109.1
C33—N3—C31107.76 (14)C29—C28—H28A109.1
C33—N3—Cd1130.29 (11)N2—C28—H28B109.1
C31—N3—Cd1121.64 (11)C29—C28—H28B109.1
C12—C11—C16120.73 (15)H28A—C28—H28B107.9
C12—C11—N1118.80 (15)C28—C29—H29A109.5
C16—C11—N1120.45 (14)C28—C29—H29B109.5
C11—C12—C13119.47 (16)H29A—C29—H29B109.5
C11—C12—H12120.3C28—C29—H29C109.5
C13—C12—H12120.3H29A—C29—H29C109.5
C14—C13—C12120.22 (16)H29B—C29—H29C109.5
C14—C13—H13119.9N3—C31—C32104.14 (15)
C12—C13—H13119.9N3—C31—H31A110.9
C13—C14—C15120.05 (16)C32—C31—H31A110.9
C13—C14—H14120.0N3—C31—H31B110.9
C15—C14—H14120.0C32—C31—H31B110.9
C16—C15—C14120.12 (16)H31A—C31—H31B108.9
C16—C15—H15119.9O3—C32—C31103.97 (13)
C14—C15—H15119.9O3—C32—H32A111.0
C15—C16—C11119.40 (15)C31—C32—H32A111.0
C15—C16—H16120.3O3—C32—H32B111.0
C11—C16—H16120.3C31—C32—H32B111.0
N1—C17—S12119.65 (12)H32A—C32—H32B109.0
N1—C17—S11120.50 (12)N3—C33—O3117.29 (15)
S12—C17—S11119.85 (9)N3—C33—C34127.25 (15)
N1—C18—C19111.61 (15)O3—C33—C34115.45 (15)
N1—C18—H18A109.3C33—C34—C35110.98 (16)
C19—C18—H18A109.3C33—C34—H34A109.4
N1—C18—H18B109.3C35—C34—H34A109.4
C19—C18—H18B109.3C33—C34—H34B109.4
H18A—C18—H18B108.0C35—C34—H34B109.4
C18—C19—H19A109.5H34A—C34—H34B108.0
C18—C19—H19B109.5C34—C35—H35A109.5
H19A—C19—H19B109.5C34—C35—H35B109.5
C18—C19—H19C109.5H35A—C35—H35B109.5
H19A—C19—H19C109.5C34—C35—H35C109.5
H19B—C19—H19C109.5H35A—C35—H35C109.5
C26—C21—C22120.92 (16)H35B—C35—H35C109.5
C26—C21—N2118.52 (15)
N3—Cd1—S11—C17−95.97 (6)Cd1—S12—C17—N1179.40 (12)
S22—Cd1—S11—C1792.53 (5)Cd1—S12—C17—S11−0.71 (9)
S12—Cd1—S11—C17−0.43 (5)Cd1—S11—C17—N1−179.41 (13)
S21—Cd1—S11—C17157.62 (5)Cd1—S11—C17—S120.70 (8)
N3—Cd1—S12—C17111.22 (6)C17—N1—C18—C1991.8 (2)
S22—Cd1—S12—C17−131.98 (5)C11—N1—C18—C19−84.61 (19)
S11—Cd1—S12—C170.43 (5)C27—N2—C21—C2682.5 (2)
S21—Cd1—S12—C17−56.47 (6)C28—N2—C21—C26−91.38 (19)
N3—Cd1—S21—C27116.69 (6)C27—N2—C21—C22−100.24 (19)
S22—Cd1—S21—C279.02 (5)C28—N2—C21—C2285.9 (2)
S12—Cd1—S21—C27−75.59 (6)C26—C21—C22—C23−0.5 (3)
S11—Cd1—S21—C27−127.39 (5)N2—C21—C22—C23−177.74 (15)
N3—Cd1—S22—C27−104.87 (6)C21—C22—C23—C241.6 (3)
S12—Cd1—S22—C27143.59 (5)C22—C23—C24—C25−1.8 (3)
S11—Cd1—S22—C2766.81 (6)C23—C24—C25—C260.9 (3)
S21—Cd1—S22—C27−8.91 (5)C22—C21—C26—C25−0.3 (3)
S22—Cd1—N3—C33−165.44 (14)N2—C21—C26—C25176.91 (15)
S12—Cd1—N3—C33−51.65 (16)C24—C25—C26—C210.2 (3)
S11—Cd1—N3—C3321.00 (16)C21—N2—C27—S21−178.05 (12)
S21—Cd1—N3—C33122.78 (15)C28—N2—C27—S21−4.7 (2)
S22—Cd1—N3—C3121.83 (15)C21—N2—C27—S221.6 (2)
S12—Cd1—N3—C31135.62 (13)C28—N2—C27—S22174.93 (14)
S11—Cd1—N3—C31−151.73 (13)Cd1—S21—C27—N2165.05 (14)
S21—Cd1—N3—C31−49.95 (14)Cd1—S21—C27—S22−14.54 (8)
C17—N1—C11—C1292.93 (19)Cd1—S22—C27—N2−164.30 (13)
C18—N1—C11—C12−90.55 (18)Cd1—S22—C27—S2115.31 (9)
C17—N1—C11—C16−88.54 (19)C27—N2—C28—C29106.4 (2)
C18—N1—C11—C1687.97 (19)C21—N2—C28—C29−79.9 (2)
C16—C11—C12—C131.2 (3)C33—N3—C31—C320.5 (2)
N1—C11—C12—C13179.69 (15)Cd1—N3—C31—C32174.66 (11)
C11—C12—C13—C14−0.8 (3)C33—O3—C32—C311.35 (19)
C12—C13—C14—C150.0 (3)N3—C31—C32—O3−1.1 (2)
C13—C14—C15—C160.4 (3)C31—N3—C33—O30.4 (2)
C14—C15—C16—C110.0 (3)Cd1—N3—C33—O3−173.07 (11)
C12—C11—C16—C15−0.8 (2)C31—N3—C33—C34−178.45 (18)
N1—C11—C16—C15−179.31 (14)Cd1—N3—C33—C348.1 (3)
C11—N1—C17—S12−1.5 (2)C32—O3—C33—N3−1.2 (2)
C18—N1—C17—S12−177.80 (12)C32—O3—C33—C34177.82 (15)
C11—N1—C17—S11178.59 (11)N3—C33—C34—C35106.5 (2)
C18—N1—C17—S112.3 (2)O3—C33—C34—C35−72.4 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H···AD—HH···AD···AD—H···A
C26—H26···Cg1i0.952.613.558 (2)177
C32—H32A···Cg1ii0.992.723.511 (2)137
C13—H13···Cg2iii0.952.613.510 (2)157

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2583).

References

  • Bruker (2001). SADABS.Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINTBruker AXS Inc., Madison, Wisconsin, USA.
  • Decken, A., Eisnor, C. R., Gossage, R. A. & Jackson, S. M. (2006). Inorg. Chim. Acta, 359, 1743–1753.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Gossage, R. A. & Jenkins, H. A. (2008). Anal. Sci. 24, x155–x156.
  • Green, M. & O’Brien, P. (1997). Adv. Mater. Opt. Electron. 7, 277–279.
  • Green, M., Prince, P., Gardener, M. & Steed, J. (2004). Adv. Mater. 16, 994–996.
  • Ivanov, V., Zaeva, A. S., Novikova, E. V., Gerasimenko, A. V. & Forsling, W. (2007). Russ. J. Coord. Chem. 33, 233–243.
  • Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431–1436.
  • Onwudiwe, D. C., Ajibade, P. A. & Omondi, B. (2011). J. Mol. Struct. 987, 58–66.
  • Pickett, N. L. & O’Brien, P. (2001). Chem. Rec. 1, 467–479. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
  • Valarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157–4167.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography