PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of cytotechspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
Cytotechnology. 1999 May; 29(3): 177–205.
PMCID: PMC3463394

Reactor design for large scale suspension animal cell culture

Abstract

The scale of operation of freely suspended animal cell culture has been increasing and in order to meet the demand for recombinant therapeutic products, this increase is likely to continue. The most common reactor types used are stirred tanks. Air lift fermenters are also used, albeit less commonly. No specific guidelines have been published for large scale (≥10 000 L) animal cell culture and reactor designs are often based on those used for microbial systems. However, due to the large difference in energy inputs used for microbial and animal cell systems such designs may be far from optimal. In this review the importance of achieving a balance between mixing, mass transfer and shear effects is emphasised. The implications that meeting this balance has on design of vessels and operation, particularly in terms of strategies to ensure adequate mixing to achieve homogeneity in pH and dissolved gas concentrations are discussed.

Full Text

The Full Text of this article is available as a PDF (295K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ade Bello R, Robinson CW, Moo Young M. Liquid circulation and mixing characteristics of air lift contactors. Canadian Journal Chemical Engineering. 1984;62:573–577.
  • Ade Bello R, Robinson CW, Moo Young M. Prediction of the volumetric mass transfer coefficients in pneumatic contactors. Chem Eng Sci. 1985;40(1):53–58. doi: 10.1016/0009-2509(85)85046-6. [Cross Ref]
  • Ade Bello R, Robinson CW, Moo Young M. Gas holdup and overall volumetric transfer coefficient in airlift contactors. Biotech Bioeng. 1985;27:369–381. doi: 10.1002/bit.260270323. [Cross Ref]
  • Adler I, Schugerl K. Cultivation of E-coli in single and ten-stage tower-loop reactors. Biotech Bioeng. 1983;25:417–436. doi: 10.1002/bit.260250210. [Cross Ref]
  • Al-Rubeai M, Singh MH, Goldman MH, Emery AN. Death mechanisms of animal cells in conditions of intensive agitation. Biotech Bioeng. 1995;45:463–472. doi: 10.1002/bit.260450602. [Cross Ref]
  • Asai T, Sano T, Itoh K. Scale up of fermentation. Biotech Forum Europe. 1992;9(9):556–550.
  • Aunins JG, Woodson BA, Hale TK, Wang DIC. Effects of paddle impeller geometry on power input and mass transfer in small scale animal cell culture vessels. Biotech Bioeng. 1989;34:1127–1132. doi: 10.1002/bit.260340902. [Cross Ref]
  • Aunins JG, Henzler HJ. Aeration in cell culture bioreactors, Chapter 11. In: Stephanopoulos G, editor. Biotechnology V 3: Bioprocessing. Weinheim, Germany: VCH; 1993. pp. 219–281.
  • Backer MP, Metzger LS, Slaber PL, Nevitt KL, Boder GB. Large scale production of monoclonal antibodies in suspension culture. Biotech Bioeng. 1988;32:993–1000. doi: 10.1002/bit.260320807. [Cross Ref]
  • Bajpai RK, Reuss M. Coupling of mixing and microbial kinetics for evaluating the performance of bioreactors. Canadian Journal Chemical Engineering. 1982;60:384–392.
  • Bakker WAM, van Can HJL, Tramper J, de Goijer CD. Hydrodynamics and mixing in a multiple air lift loop reactor. Biotech Bioeng. 1993;42:994–1001. doi: 10.1002/bit.260420810. [Cross Ref]
  • Bakker WAM, den Hertog M, Tramper J, de Gooijer CD. Oxygen transfer in a multiple air-lift loop reactor. Bioprocess Engineering. 1995;12:167–172.
  • Birch JR, Bonnerjea J, Flatman S, Vranch S. The production of monoclonal antibodies, Chapter 5. In: Birch JR, Lennox ES, editors. Monoclonal antibodies. New York, U.S.A.: Wiley-Liss; 1995. pp. 231–265.
  • Birch JR, Thompson PW, Lambert K, Boraston R. The large scale cultivation of hybridoma cells producing monoclonal antibodies. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 1–16.
  • Blenke H. Loop reactors. In: Ghose TK, Fiechter A, Blakebrough N, editors. Advances in Biochemical Engineering. New York, U.S.A.: Springer Verlag; 1979. pp. 121–214.
  • Bliem R, Katinger H. Scale up engineering in animal cell technology: Part I. Trends in Biotechnology. 1988;6:190–195. doi: 10.1016/0167-7799(88)90045-5. [Cross Ref]
  • Bliem R, Katinger H. Scale up engineering in animal cell technology: Part II. Trends in Biotechnology. 1988;6:224–230. doi: 10.1016/0167-7799(88)90078-9. [Cross Ref]
  • Boraston R, Thompson PW, Garland S, Birch JR. Growth and oxygen requirements of antibody producing mouse hybridoma cells in suspension culture. Develop Biol Standard. 1984;55:103–111.
  • Born C, Zhang Z, Al-Rubeai M, Thomas CR. Estimation of disruption of animal cells by laminar shear stress. Biotech Bioeng. 1992;40:1004–1010. doi: 10.1002/bit.260400903. [Cross Ref]
  • Borys MC, Linzer DIH, Papoutsakis ET. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH dependent manner. Biotech Bioeng. 1994;43:505–514. doi: 10.1002/bit.260430611. [Cross Ref]
  • Broad DF, Brown ME, Grant AP and Wood LA (1989) Scale up of mammalian call culture, in Advances in Animal Cell Biology and Technology for Bioprocesses, Spier RE, Griffiths JB, Stephenne J and Crooy PJ (Eds) pp. 412-415.
  • Byun TG, Zeng AP, Deckwer WD. Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by enterobacter aerogenes at constant oxygen transfer rate. Bioprocess Engineering. 1994;11:167–175.
  • Chalmers JJ. Cells and bubbles in sparged bioreactors. Cytotechnology. 1994;15:311–320. doi: 10.1007/BF00762406. [PubMed] [Cross Ref]
  • Chang YHD, Grodzinsky AJ, Wang DIC. Nutrient enrichment and in-situ waste removal through electrical means for hybridoma cultures. Biotech Bioeng. 1995;47:319–326. doi: 10.1002/bit.260470306. [Cross Ref]
  • Chang YHD, Grodzinsky AJ, Wang DIC. In situ removal of ammonium and lactate through electrical means for hybridoma cultures. Biotech Bioeng. 1995;47:308–318. doi: 10.1002/bit.260470305. [Cross Ref]
  • Cherry RS and Papoutsakis ET (1990) Fluid mechanical injury of cells in bioreactors, Chapter 3, In Animal cell biotechnology, Vol 4, Spier RE and Griffiths JB (Eds), pp. 71-121.
  • Cherry RS. Animal cells in turbulent fluids — details of the physical stimulus and the biological response. Biotech Adv. 1993;11(2):279–299. doi: 10.1016/0734-9750(93)90043-M. [Cross Ref]
  • Chisti Y. Animal cell culture in stirred bioreactors: observations on scale up. Bioprocess Engineering. 1993;9:191–196. doi: 10.1007/BF00369402. [Cross Ref]
  • Chisti MY, Moo Young M. Airlift reactors: characteristics, applications and design considerations. Chem Eng Comm. 1987;60:195–424.
  • Chisti MY, Halard B, Moo-Young M. Liquid circulation in airlift reactors. Chem Eng Sci. 1988;43(3):451–457. doi: 10.1016/0009-2509(88)87005-2. [Cross Ref]
  • Choi PB. Designing airlift loop fermenters. Chem Eng Progress. 1990;86:32.
  • Chudacek MW (1984) Does your tank bottom have the right shape, Chemical Engineering October 1: 79-83.
  • Chung IS, Taticek RA, Shuler ML. Production of human alkaline phosphatase, a secreted, glycosylated protein, from a baciulovirus expression system and the attachment-dependent cell line trichoplusia ni bti-tn 5b1-4 using a split flow, air lift bioreactor. Biotechnol Prog. 1993;9:675–678. doi: 10.1021/bp00024a018. [PubMed] [Cross Ref]
  • Clark NN, Flemmer RL. predicting the hold up in two phase bubble upflow and downflow using the Zuber and Findlay drift flux model. AIChE Journal. 1985;31(3):500–503. doi: 10.1002/aic.690310323. [Cross Ref]
  • Cooney CL. Are we prepared for animal cell technology in the 21st century? In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. animal cell technology: developments towards the 21st century. The Netherlands: Kluwer; 1995.
  • Cronin DG and Nienow AW (1989) Mixing studies in a large laboratory proto fermenter: Rushton turbines, Proceedings of the Third NEL Bioreactor Research Symposium Paper No. 1-C, 17-34.
  • Dorresteijn D., Tramper, Beuvery A simple dynamic method for on-line and off-line determination of kLa during cultivation of animal cells. Biotech Techniques. 1994;8(9):675–680. doi: 10.1007/BF00241697. [Cross Ref]
  • Fields PR, Slater NKH. Tracer dispersion in a laboratory air lift reactor. Chem Eng Sci. 1983;38(4):647–653. doi: 10.1016/0009-2509(83)80124-9. [Cross Ref]
  • Fields PR, Slater NKH. The influence of fluid mixing upon respiratory patterns for extended growth of a methylotroph in an air lift fermenter. Biotech Bioeng. 1984;23:719–726. doi: 10.1002/bit.260260714. [Cross Ref]
  • Fleischaker RJ, Sinskey A. Oxygen demand and supply in cell culture. European J Appl Microbiol Biotechnol. 1981;12:193–197. doi: 10.1007/BF00499486. [Cross Ref]
  • Flickinger MC, Goebel NK, Bibila T, Boyc-Jacino S. Evidence of post transcriptional stimulation of monoclonal antibody secretion by L-glutamine during slow hybridoma growth. J Biotechnology. 1992;22:201–226. doi: 10.1016/0168-1656(92)90142-V. [Cross Ref]
  • Gardner AR, Gainer JL, Kirwan DJ. Effects of stirring and sparging on cultured hybridoma cells. Biotech Bioeng. 1990;35(9):940–947. doi: 10.1002/bit.260350912. [Cross Ref]
  • Geisler RK, Buurman C, Mersmann AB. Scale up of the necessary power input in stirred vessels with suspensions. Chem Eng Journal. 1993;51:29–39. doi: 10.1016/0300-9467(93)80005-9. [Cross Ref]
  • Glacken MW, Fleischaker RJ, Sinskey AJ. Mammalian cell culture: engineering principles and scale-up. Trends in Biotechnology. 1983;1:102–108. doi: 10.1016/0167-7799(83)90032-X. [Cross Ref]
  • Gray DR, Chen S, Howarth W, Inlow D, Maiorella CO2 in large scale and high density CHO cell perfusion culture. Cytotechnology. 1996;22:65–78. doi: 10.1007/BF00353925. [PubMed] [Cross Ref]
  • Griffiths JB. Overview of cell culture systems and their scale up, Chapter 7. In: Spier RE, Griffiths JB, editors. Animal cell biotechnology. London: Academic Press; 1988. pp. 179–220.
  • Gunzel B, Yonsel S, Deckwer WD. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 M3. Appl Microbiol Biotechnol. 1991;36:289–294.
  • Handa-Corrigan A, Emery AN, Spier RE. Effect of gas-liquid interfaces on growth of suspended mammalian cells: mechanism of cell damage by bubbles. Enzyme and Microbial Technol. 1989;11:230–235. doi: 10.1016/0141-0229(89)90097-5. [Cross Ref]
  • Handa-Corrigan A. Oxygenating animal cell cultures: the remaining problems, Chapter 4. In: Spier RE, Griffiths JB, editors. Animal cell biotechnology. London: Academic Press; 1990. pp. 123–132.
  • Hofmann F, Wrasidlo W, de Winter D and Gallagher S (1989) Fully integrated, compact membrane reactor systems for the large scale production of monoclonal antibodies, In Advances in Animal Cell Biology and Technology for Bioprocesses, Spier RE, Griffiths JB, Stephenne J and Crooy PJ (Eds) pp. 305-310.
  • Horvarth BE. Mammalian cell culture scale-up: is bigger better? Bio/Technology. 1989;7:468–469. doi: 10.1038/nbt0589-468. [Cross Ref]
  • Hsu YC, Dudukovic MP. Gas hold up and liquid recirculation in gas-lift reactors. Chem Eng Sci. 1980;35:135–141. doi: 10.1016/0009-2509(80)80080-7. [Cross Ref]
  • Hu WS, Meier J, Wang DIC. Use of surface aerator to improve oxygen transfer in cell culture. Biotech Bioeng. 1986;28:122–125. doi: 10.1002/bit.260280120. [Cross Ref]
  • Hu W, Peshwa M. Animal cell bioreactors-recent advances and challenges to scale up. Can J Chem Eng. 1991;69:409. doi: 10.1002/cjce.5450690203. [Cross Ref]
  • Jem KW (1989) Scale down techniques for fermentation, Pharmaceutical Technology International, May/June, 60-65.
  • Jobses I, Martens D, Tramper J. Lethal events during gas sparging in animal cell culture. Biotech Bioeng. 1991;37(5):484–490. doi: 10.1002/bit.260370510. [Cross Ref]
  • Jones AG. Liquid circulation in a draft tube bubble column. Chem Eng Sci. 1985;40(3):449–462. doi: 10.1016/0009-2509(85)85106-X. [Cross Ref]
  • Ju L-K, Chase GG. Improved scale up strategies of bioreactors. Bioprocess Engineering. 1992;8:49–53. doi: 10.1007/BF00369263. [Cross Ref]
  • Junker BH, Hunt G, Burgess B, Aunins J, Buckland BC. Modified microbial fermenter performance in animal cell culture and its implications for flexible fermenter design. Bioprocess Engineering. 1994;11:57–63. doi: 10.1007/BF00389561. [Cross Ref]
  • Katinger HWD, Scheirer W, Kromer E. Bubble column reactor for mass propagation of animal cells in suspension culture. Ger Chem Eng. 1979;2:31–38.
  • Kawase Y. Design and scale up of external loop airlift bioreactor. In: Galindo E, Ramirez OT, editors. Advances in Bioprocess Engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 13–19.
  • Kearns M. Integrated design for mammalian cell culture. Bio/Technology. 1990;8:409–413. doi: 10.1038/nbt0590-409. [PubMed] [Cross Ref]
  • Keller J, Dunn IJ. A fluidized bed reactor for cultivation of animal cells. In: Galindo E, Ramirez OT, editors. Advances in Bioprocess Engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 115–121.
  • Kioukia N, Nienow AW, Emery AN, Al-Rubeai M. The impact of fluid dynamics on the biological performance of free suspension animal cell culture: Further studies. Trans I Chem E. 1992;70C:143–148.
  • Kossen NWF. Scale-up. In: Galindo E, Ramirez OT, editors. Advances in bioprocess engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 53–65.
  • Kubota H, Hosono Y, Fujie K. Characteristic evaluations of ICI air lift type deep shaft aerator. J Chem Eng Japan. 1978;11(4):319–325.
  • Kunas KT, Papoutsakis Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotech Bioeng. 1990;36(5):476–483. doi: 10.1002/bit.260360507. [Cross Ref]
  • Kurano N, Leist C, Messi F, Kurano S, Fiechter A. Growth behaviour of chinese hamster ovary cells in a compact loop bioreactor. 2 Effects of medium components and waste products. J Biotechnology. 1990;15:113–128. doi: 10.1016/0168-1656(90)90055-G. [Cross Ref]
  • Lapin A, Paaschen T and Lubbert A (1996) A mechanistic approach to bioreactor fluid dynamics, Fronteras en Biotecnologia Bioingenieria, Sociedad Mexicana de Biotecnologia Bioingeneiria, Galindo E (Ed) pp. 179-196.
  • Lavery M, Nienow AW. Oxygen transfer in animal cell culture medium. Biotech Bioeng. 1987;30:368–373. doi: 10.1002/bit.260300307. [Cross Ref]
  • Leist CH, Meyer HP, Fiechter A. Potential problems of animal cells in suspension culture. J Biotechnology. 1990;15:1–46. doi: 10.1016/0168-1656(90)90049-H. [Cross Ref]
  • Leist C, Meyer HP, Fiechter A. process control during the suspension culture of a human melanoma cell line in a mechanically stirred loop reactor. J Biotechnology. 1986;4:235–246. doi: 10.1016/0168-1656(86)90028-3. [Cross Ref]
  • Leng DE. Succeed at scale up. Chem Eng Progress. 1991;6:23–31.
  • Lippert J, Adler I, Meyer HD, Lubbert A, Schugerl K. Characterisation of the two-phase systems in airlift tower-loop bioreactors during cultivation of E-coli. Biotech Bioeng. 1983;25:437–450. doi: 10.1002/bit.260250211. [Cross Ref]
  • Lu GZ, Thompson BG, Suresh MR, Gray MR. Cultivation of hybridoma cells in an inclined bioreactor. Biotech Bioeng. 1995;45:176–186. doi: 10.1002/bit.260450212. [Cross Ref]
  • Lu WJ, Hwang SJ, Chang CM. Liquid mixing in internal loop airlift reactors. Ind Eng Chem Res. 1994;33:2180–2186. doi: 10.1021/ie00033a023. [Cross Ref]
  • Lubbert A, Frolich S, Larson B, Schugerl K. Fluid dynamics in airlift loop bioreactors as measured during real cultivation processes, paper H1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 379–393.
  • Machon V, Pacek AW, Nienow AW. Bubble sizes in electrolyte and alcohol solutions in a turbulent stirred vessel. Trans I Chem E. 1997;75A:339–348. doi: 10.1205/026387697523651. [Cross Ref]
  • Martin N, Brennen A, Denome L, Shaevitz High productivity in mammalian cell culture. Bio/Technology. 1987;5:838–840. doi: 10.1038/nbt0887-838. [Cross Ref]
  • Mayr B, Nagy E, Horvat P, Moser A. Scale up on basis of structured mixing models: a new concept. Biotech Bioeng. 1994;43:195–206. doi: 10.1002/bit.260430303. [Cross Ref]
  • Merchuk, Niranjan Why use bubble column bioreactors. TIBTECH. 1994;12:501–511.
  • Merchuk JC. Gas hold-up and liquid velocity in a two dimensional air lift reactor. Chem Eng Sci. 1986;41(1):11–16. doi: 10.1016/0009-2509(86)85192-2. [Cross Ref]
  • Merchuk JC. Why use air-lift bioreactors? TIBTECH. 1990;8:66–71.
  • Merchuk JC, Siegel MH. Air-lift reactors in chemical and biological technology. J Chem Tech Biotechnol. 1988;41:105–120.
  • Merchuk JC, Stein Y. Local gas hold up and liquid velocity in air lift reactors. AIChEJ. 1981;27(3):377–388. doi: 10.1002/aic.690270307. [Cross Ref]
  • Merchuk JC, Stein Y. A distributed parameter model for an airlift fermentor, effects of pressure. Biotech Bioeng. 1981;23:1309–1324. doi: 10.1002/bit.260230611. [Cross Ref]
  • Michaels J, Mallik AK, Nowak JE, Wasan DT, Papoutsakis ET. Dynamic interfacial tension and rheological properties of cell culture medium with shear protectant additives. In: Spier RE, Griffiths JB, Berthold W, editors. Animal Cell Technology: Products of Today, Prospects for Tomorrow. Oxford: Butterworth-Heinemann Ltd; 1994. pp. 389–391.
  • Miller WM, Wilkie CR, Blanch HW. Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture. Bioprocess Engineering. 1988;3:113–122. doi: 10.1007/BF00373474. [Cross Ref]
  • Monahan PB, Holtzapple MT. Oxygen transfer in a pulse bioreactor. Biotech Bioeng. 1993;42:724–728. doi: 10.1002/bit.260420607. [Cross Ref]
  • Moo Young and Chisti (1988) Considerations for designing bioreactors for shear sensitive culture. Bio/Technology Nov, 1291-1296.
  • Moreira JL, Cruz PE, Santana PC, Feliciano AS. Influence of power input and aeration method on mass transfer in a laboratory animal cell culture vessel. J Chem Tech Biotechnol. 1995;62:118–131. doi: 10.1002/jctb.280620203. [Cross Ref]
  • Nelson KL (1988a) Industrial scale mammalian cell culture part I: bioreactor design considerations. Biopharm Manufact, Feb, 42-46.
  • Nelson KL (1988b) Industrial scale mammalian cell culture part II: design and scale up. Biopharm Manufact, Feb, 47-55.
  • Nienow A. Gas dispersion performance in fermenter operation. Chem Eng Prog. 1990;86(2):61–71.
  • Nienow AW, Warmoeskerken MMCG, Smith JM and Konno M (1985) On the flooding/loading transition and the complete dispersal condition in aerated vessels agitated by a Rushton turbine, 5th European Conference on Mixing, BHRA, Cranfield, 143-154.
  • Nienow AW, Langheinrich C, Stevenson NC, Emery AN, Clayton TM, Slater NKH. Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnology. 1996;22:87–94. doi: 10.1007/BF00353927. [PubMed] [Cross Ref]
  • Oh SKW, Vig P, Chua F, Teo WK, Yap MGS. Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotech Bioeng. 1993;42:601–610. doi: 10.1002/bit.260420508. [Cross Ref]
  • Oh SKW, Chua FKF, Choo ABH. Intracellular responses of productive hybridomas subjected to high osmotic pressure. Biotech Bioeng. 1995;46:525–535. doi: 10.1002/bit.260460605. [Cross Ref]
  • Ohta N, Park YS, Yahiro K, Okabe M. Comparison of neomycin production from streptomyces fradiae cultivation using soybean oil as the sole carbon source in an air lift bioreactor and a stirred tank. J Fermentation Bioengineering. 1995;79(5):443–448. doi: 10.1016/0922-338X(95)91259-8. [Cross Ref]
  • Oosterhuis NMG, Kossen NWF. Dissolved oxygen concentration profiles in a production scale bioreactor. Biotech Bioeng. 1984;26:546–550. doi: 10.1002/bit.260260522. [Cross Ref]
  • Onken U, Weiland P. Airlift fermenters: construction, behaviour and uses. Advances in Biotechnological Processes. 1983;1:67–95.
  • Orazem ME, Fan LT, Erickson LE. Bubble flow in the downflow section of an airlift tower. Biotech Bioeng. 1979;21:1579–1606. doi: 10.1002/bit.260210907. [Cross Ref]
  • Oyaas K, Ellingsen TE, Dyrset N, Levine DW. Utilisation of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress. Biotech Bioeng. 1994;43:77–89. doi: 10.1002/bit.260430111. [Cross Ref]
  • Oyaas K, Berg TM, Bakke O, Levine DW. Hybridoma growth and antibody production under conditions of hyperosmotic stress. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Sevenoaks, Kent U.K.: Butterworths; 1989. pp. 212–220.
  • Ozturk S, Palsson B. Growth, metabolic and antibody production kinetics of hybridoma cell culture I Analysis of data from controlled batch reactors. Biotechnol Prog. 1991;7:471–480. doi: 10.1021/bp00012a001. [PubMed] [Cross Ref]
  • Ozturk SS, Riley MR, Palsson BO. Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotech Bioeng. 1992;39:418–431. doi: 10.1002/bit.260390408. [Cross Ref]
  • Ozturk SS, Palsson BO. Effect of medium osmolarity on hybridoma growth, metabolism and antibody production. Biotech Bioeng. 1991;37:989–993. doi: 10.1002/bit.260371015. [Cross Ref]
  • Ozturk SS, Palsson BO. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 1. analysis of data from controlled batch reactors. Biotechnol Prog. 1991;7:471–480. doi: 10.1021/bp00012a001. [PubMed] [Cross Ref]
  • Papoutsakis TE, Kunas KT. Hydrodynamic effects of cultured hybridoma cells CRL 8018 in an agitated bioreactor. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in animal cell biology and technology for bioprocesses. Sevenoaks, Kent, U.K.: Butterworths; 1989. pp. 203–211.
  • Papoutsakis ET. Media additives for protecting freely suspended animal cells against agitation and aeration damage. Trends in Biotechnology. 1991;9:316–397. doi: 10.1016/0167-7799(91)90102-N. [PubMed] [Cross Ref]
  • Park SY, Lee GM. Enhancement of monoclonal antibody production by immobilised hybridoma cell culture with hyperosmolar medium. Biotech Bioeng. 1995;48:699–705. doi: 10.1002/bit.260480618. [Cross Ref]
  • Parthasarathy R, Jameson GJ, Ahmed N. Bubble break up in stirred vessels-predicting the Sauter mean diameter. Trans I Chem E. 1991;69A:295–301.
  • Peshwa MV, Kyung Y-S, McClure DB, Hu W-S. Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotech Bioeng. 1993;41:179–187. doi: 10.1002/bit.260410203. [Cross Ref]
  • Phillips AW, Ball GD, Fantes KH, Finter NB, Johnson MD. Experience in the cultivation of mammalian cells on the 8000 L scale. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 87–95.
  • Pullen KF, Johnson MD, Phillips AW, Ball GD, Finter NB. Very large scale suspension cultures of mammalian cells. Develop Biol Standard. 1984;60:175–177.
  • Ray NG, Rivera R, Gupta R, Mueller D, et al. Large scale production of humanised monoclonal antibody expresses in a GS-NSO cell line. In: Carrondo MJT, et al., editors. Animal Cell Technology. The Netherlands: Kluwer Academic Publishers; 1997. pp. 235–241.
  • Reddy S, Miller WM. Effects of abrupt and gradual osmotic stress on antibody production and content in hybridoma cells that differ in production kinetics. Biotechnol Prog. 1994;10:165–173. doi: 10.1021/bp00026a006. [PubMed] [Cross Ref]
  • Reisman HB. Problems in scale up of biotechnology production processes. Critical Reviews in Biotechnology. 1993;13(3):195–253. [PubMed]
  • Reuss M. Stirred tank bioreactors. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 207–255.
  • Reuss M. Oxygen transfer and mixing: scale up implications, Chapter 10. In: Stephanopoulos G, editor. Biotechnology V 3: Bioprocessing. Weinheim, Germany: VCH; 1993. pp. 186–217.
  • Reuveny S and Lazar A (1989) Equipment and procedures for production of monoclonal antibodies in culture. In Monoclonal antibodies and applications Vol 11, Liss AR (Ed) pp. 45-80.
  • Rice JW, Rankl NB, Gurganus TM, Marr CM, Barna JB, Walters MM, Burns DJ. A comparison of large scale Sf9 insect cell growth and protein production: stirred vessel vs airlift. BioTechniques. 1993;15(6):1052–1059. [PubMed]
  • Royce PNC, Thornhill NF. Estimation of dissolved carbon dioxide concentrations in aerobic fermentations. AICh EJ. 1991;37(11):1680–1686. doi: 10.1002/aic.690371111. [Cross Ref]
  • Russell AB, Thomas CR, Lilly MD. The influence of vessel height and top section size on the hydrodynamics characteristics of air lift fermenters. Biotech Bioeng. 1994;43:69–76. doi: 10.1002/bit.260430110. [Cross Ref]
  • Russell AB, Thomas CR, Lilly MD. Oxygen transfer measurements during yeast fermentations in a pilot scale airlift fermenter. Bioprocess Engineering. 1995;12:71–79.
  • Schlaeger EJ, Schumpp B. Studies on mammalian cell growth in suspension culture. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Sevenoaks, Kent, U.K.: Butterworths; 1989. pp. 386–396.
  • Schugerl K, Lubbert A. Pneumatically driven bioreactors. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 257–303.
  • Siegel MH, Robinson CW. Applications of airlift gas-liquid solid reactors in biotechnology. Chem Eng Sci. 1992;47(13/14):3215–3229. doi: 10.1016/0009-2509(92)85030-F. [Cross Ref]
  • Shin CS, Kim SY, Ju JY. Characteristics of sisomicin fermentation supplemented with MgSO4 in stirred and air lift fermenters. Biotechnology Letters. 1994;16(3):251–256. doi: 10.1007/BF00134621. [Cross Ref]
  • Smart NJ (1984) Gas lift fermenters: theory and practice, Laboratory Practice, July, 9–14.
  • Smith JM, Davison SW. Development of a strategy to control the dissolved concentrations of oxygen and carbon dioxide at constant shear in a plant cell bioreactor. Biotech Bioeng. 1990;35:1088–1101. doi: 10.1002/bit.260351104. [Cross Ref]
  • Sola C, Godia F. Scale up. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 511–552.
  • Stejskal J, Potucek F. Oxygen transfer in liquids. Biotech Bioeng. 1985;27:503–508. doi: 10.1002/bit.260270416. [Cross Ref]
  • Sucker HG, Jordan M, Eppenberger HM, Widmer F. Bubble bed reactor: a reactor design to minimise the damage of bubble aeration on animal cells. Biotech Bioeng. 1994;44:1246–1254. doi: 10.1002/bit.260441012. [Cross Ref]
  • Takagi M, Ohara K-I, Yoshida T. Effect of hydrostatic pressure on hybridoma cell metabolism. J Fermentation and Bioengineering. 1995;80(6):619–621. doi: 10.1016/0922-338X(96)87744-0. [Cross Ref]
  • Tokashiki M, Takamatsu H. Perfusion culture apparatus for suspended mammalian cells. Cytotechnology. 1993;13:149–159. doi: 10.1007/BF00749811. [PubMed] [Cross Ref]
  • Tolbert WR, Lewis C, White PJ, Feder J. Perfusion culture systems for production of mammalian cell biomolecules. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 97–119.
  • Tramper J, Smit D, Straatman J, Vlak JM. Bubble column design for growth of fragile insect cells. Bioprocess Engineering. 1987;2:37–41.
  • Tramper J, de Gooijer KD, Vlak JM. Scale up considerations and bioreactor development for animal cell cultivation. Insect Cell Culture Engineering: Bioprocess Technology. 1993;17:139–177.
  • Tramper J. Oxygen gradients in animal cell bioreactors. In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. animal cell technology: developments towards the 21st century. The Netherlands: Kluwer Academic Publishers; 1995. pp. 883–891.
  • Trinh K, Garciabriones M, Hink F, Chalmers JJ. Quantification of damage to suspended insect cells as a result of bubble rupture. Biotech Bioeng. 1994;43(1):37–45. doi: 10.1002/bit.260430106. [Cross Ref]
  • Van Brunt J. How big is big enough. Bio/Technology. 1988;6(5):480–485.
  • Van der Pol LA, Beeksma I, Tramper J. Polyethylene glycol as protectant against damage caused by sparging for hybridoma suspension cells in a bubble column. Enzyme Microb Technol. 1995;17:401–407. doi: 10.1016/0141-0229(94)00063-W. [Cross Ref]
  • Van der Pol L, Bakker WAM, Tramper J. Effect of low serum concentrations on growth, production and shear sensitivity of hybridoma cells. Biotech Bioeng. 1992;40(1):179–180. doi: 10.1002/bit.260400125. [Cross Ref]
  • Van der Pol L, Bonarius D, Vandewouw G, Tramper J. Effect of silicone antifoam on shear sensitivity of hybridoma cells in sparged cultures. Biotech Progress. 1993;9(5):504–509. doi: 10.1021/bp00023a009. [Cross Ref]
  • Verlaan P, Tramper J, Van't R. A hydrodynamic model for an airlift loop bioreactor with external loop. Chem Eng Journal. 1986;33:B43–B53. doi: 10.1016/0300-9467(86)80052-1. [Cross Ref]
  • Verlaan P, Tramper J, van't Riet K, Luyben K. Hydrodynamics and axial dispersion in an air lift loop bioreactor with two and three phase flow. Proc International Conf on Bioreactor Fluid Dynamics BHRA Fluid Engineering. 1986;7:93–107.
  • Verlaan P, Van Ejis AMM, Tramper J, van't Riet K, Luyben K. Estimation of axial dispersion in individual sections of an airlift loop reactor. Chem Eng Sci. 1989;44(5):1139–1146. doi: 10.1016/0009-2509(89)87013-7. [Cross Ref]
  • Verlaan P, Vos JC, van't Riet K. From bubble column to air lift loop reactor: hydrodynamics and axial dispersion of the transition flow regime, paper F1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 259–275.
  • Voncken RM, Holmes DB, Den Hartog HW. Fluid flow in turbine stirred, baffled tanks II: dispersion during circulation. Chem Eng Sci. 1964;19:209–213. doi: 10.1016/0009-2509(64)85031-4. [Cross Ref]
  • Votruba J, Sobotka M. Physiological similarity and bioreactor scale up. Folia Microbiol. 1992;37(5):331–345.
  • Wang Y-D, Mann R. Partial segregation in stirred batch reactors. Trans IChemE. 1992;70A:283–290.
  • Wayte J, Boraston R, Bland H, Varley J, Brown M. pH: Effects on growth and productivity of cell lines producing monoclonal antibodies: control in large scale fermenters. The Genetic Engineer and Biotechnologist. 1997;17(2–3):125–132.
  • Werner RG (1994) Potential and efficiency in the biotechnical process, Pharmaceutical Technology Europe, May, pp. 20-28.
  • Werner R, Walz F, Noe W, Konrad A. Safety and economic aspects of continuous mammalian cell culture. J Biotechnol. 1992;22:51–68. doi: 10.1016/0168-1656(92)90132-S. [PubMed] [Cross Ref]
  • Whitton M. Power and mass transfer studies in a tall vessel equipped with three impellers, paper D1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 135–158.
  • Wu W-T, Jong J-Z. Liquid phase dispersion in an airlift reactor with a net draft tube. Bioprocess Eng. 1994;11:43–47. doi: 10.1007/BF00389559. [Cross Ref]
  • Yang JD, Wang NS. Cell inactivation in the presence of sparging and mechanical agitation. Biotech Bioeng. 1992;40(7):806–816. doi: 10.1002/bit.260400708. [Cross Ref]
  • Zhang S, Handa-Corrigan A, Spier RE. Oxygen transfer properties of bubbles in animal cell culture media. Biotech Bioeng. 1992;40:252–259. doi: 10.1002/bit.260400209. [Cross Ref]
  • Zhang A., Thomas Comparison of fragility of several animal cell lines. Biotech Techniques. 1993;7(3):177–182.
  • Zhang ZB, Thomas CR. Micromanipulation — a new approach to studying animal cell damage in bioreactors. The Genetic Engineer and Biotechnologist. 1993;13(1):19–29.
  • Zhou W, Bibila T, Glazonitsky K, Montalvo J, Chan C, Di Stefano D, Munshi S, Robinson D, Buckland B, Aunins J. Large scale production of recombinant mouse and rat growth hormone by fed-batch GS-NSO cell cultures. Cytotechnology. 1996;22:239–250. doi: 10.1007/BF00353944. [PubMed] [Cross Ref]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.