PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcpsBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Plant Biology
 
BMC Plant Biol. 2012; 12: 141.
Published online 2012 August 10. doi:  10.1186/1471-2229-12-141
PMCID: PMC3462119

Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes

Abstract

Background

The Barley stripe mosaic virus (BSMV)-based vector has been developed and used for gene silencing in barley and wheat seedlings to assess gene functions in pathogen- or insect-resistance, but conditions for gene silencing in spikes and grains have not been evaluated. In this study, we explored the feasibility of using BSMV for gene silencing in wheat spikes or grains.

Results

Apparent photobleaching on the spikes infected with BSMV:PDS at heading stage was observed after13 days post inoculation (dpi), and persisted until 30dpi, while the spikes inoculated with BSMV:00 remained green during the same period. Grains of BSMV:PDS infected spikes also exhibited photobleaching. Molecular analysis indicated that photobleached spikes or grains resulted from the reduction of endogenous PDS transcript abundances, suggesting that BSMV:PDS was able to induce PDS silencing in wheat spikes and grains. Inoculation onto wheat spikes from heading to flowering stage was optimal for efficient silencing of PDS in wheat spikes. Furthermore, we used the BSMV-based system to reduce the transcript level of 1Bx14, a gene encoding for High-molecular-weight glutenin subunit 1Bx14 (HMW-GS 1Bx14), by 97 % in the grains of the BSMV:1Bx14 infected spikes at 15dpi, compared with that in BSMV:00 infected spikes, and the reduction persisted until at least 25 dpi. The amount of the HMW-GS 1Bx14 was also detectably decreased. The percentage of glutenin macropolymeric proteins in total proteins was significantly reduced in the grains of 1Bx14-silenced plants as compared with that in the grains of BSMV:00 infected control plants, indicating that HMW-GS 1Bx14 is one of major components participating in the formation of glutenin macropolymers in wheat grains.

Conclusion

This is one of the first reports of successful application of BSMV-based virus-induced-gene-silencing (VIGS) for gene knockdown in wheat spikes and grains and its application in functional analysis of the 1Bx14 gene. The established BSMV-VIGS system will be very useful in future research on functional analysis of genes contributing to grain quality and the metabolic networks in developing seeds of wheat.

Keywords: Triticum aestivum, Spike, Grain, Barley stripe mosaic virus (BSMV), Virus-induced gene silencing (VIGS), Functional genomics

Articles from BMC Plant Biology are provided here courtesy of BioMed Central