Search tips
Search criteria 


Logo of jbiolphysspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
J Biol Phys. 2005 December; 31(3-4): 465–475.
PMCID: PMC3456335

Dielectric Properties of Yeast Cells Expressed With the Motor Protein Prestin


We report on the linear and nonlinear dielectric properties of budding yeast (S. cerevisiae) cells, one strain of which has been genetically modified to express prestin. This motor protein plays a crucial role in the large electromotility exhibited by the outer hair cells of mammalian inner ears. Live cell suspensions exhibit enormous dielectric responses, which can be used to probe metabolic activity, membrane potential, and other properties. The aims of this study are: (1) to compare the dielectric responses of organisms expressing prestin from those of control specimens, and (2) ultimately to further develop dielectric response as a tool to study live cells, proteins, and lipids.

Key words: dielectric spectroscopy, cochlea, outer hair cells, motor proteins, prestin, budding yeast, S. cerevisiae

Full Text

The Full Text of this article is available as a PDF (1.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Schwan, H.P.: Electrical Properties of Tissue and Cell Suspensions, in J.A. Lawrence and C.A. Tobias (eds.), Advances in Biological and Medical Physics, Vol. V, New York, Academic Press, 1957, pp. 147–209. [PubMed]
  • Asami K., Hanai T., Koizumi N. Dielectric Properties of Yeast Cells: Effect of Some Ionic Detergents on the Plasma Membranes. Journal of Membrane Biology. 1977;34:145–156.
  • For a recent review see Asami, K.: Characterization of Biological Cells by Dielectric Spectroscopy, J. Non-Crystalline Solids305 (2002), 268–277.
  • Prodan C., Prodan E. The Dielectric Behaviour of Living Cell Suspensions J. Phys. D: Applied Phys. 1999. 32335–343.3431999JPhD...32..335P171886610.1088/0022-3727/32/3/022 [Cross Ref]
  • Prodan, C.: Dielectric Properties of Live Cell Suspensions, Ph.D. Dissertation, University of Houston (2003).
  • Prodan, C., Claycomb, J.R., Prodan, E. and Miller, J.H., Jr.: High-Tc SQUID-Based Impedance Spectroscopy of Living Cells Suspensions, Physica C341348 (2000), 2693–2694.
  • Prodan C., Mayo F., Claycomb J.R., Miller J.H., Jr., Benedik M.J. Low-Frequency, Low-Field Dielectric Spectroscopy of Living Cell Suspensions J. Appl. Phys. 2004. 953754–3756.37562004JAP....95.3754P10.1063/1.1649455 [Cross Ref]
  • Woodward A.M., Kell D.B. On the Nonlinear Dielectric Properties of Biological Systems. Saccharomyces cerevisiae, Bioelectrochem. & Bioenerg. 1990;24:83–100.
  • Woodward, A.M. and Kell, D.B.: Dual-Frequency Excitation: A Novel Method for Probing the Nonlinear Dielectric Properties of Biological Systems, and its Application to Suspensions of S. cerevisiae, Bioelectrochem. & Bioenerg. 25 (1991), 395–413.
  • Jonscher A.K. The ‘Universal’ Dielectric Response Nature 1977. 267673–679.6791977Natur.267..673J10.1038/267673a0 [Cross Ref]
  • Raicu V. Dielectric Dispersion of Biological Matter: Model Combining Debye-Type and ‘Universal’ Responses Phys. Rev. E 1999. 604677–4680.46801999PhRvE..60.4677R10.1103/PhysRevE.60.4677 [PubMed] [Cross Ref]
  • Raicu, V., Sato, T. and Raicu, G.: Non-Debye Dielectric Relaxation in Biological Structures Arises From Their Fractal Nature, Phy. Rev. E64 (2001), 021916-1–10. [PubMed]
  • Brownell W.E., Bader C.R., Bertrand D., De Ribaupierre Y. Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cells Science 1985. 227194–196.1961985Sci...227..194B [PubMed]
  • Kachar B., Brownell W.E., Altschuler R., Fox J. Electrokinetic Shape Changes of Cochlear Outer Hair Cells Nature 1986. 322365–368.3681986Natur.322..365K10.1038/322365a0 [PubMed] [Cross Ref]
  • Hudspeth A.J., Corey D.P. Sensitivity, Polarity, and Conductance Change in the Response of Vertebrate Hair Cells to Controlled Mechanical Stimuli Proc. Nat. Acad. Sci. USA 1977. 742407–2411.24111977PNAS...74.2407H [PubMed]
  • Brownell W.E., Spector A.A., Raphael R.M., Popel A.S. Micro- and nanomechanics of the Cochlear Outer Hair Cells. Annu. Rev. Biomed. Eng. 2001;3:169–194. doi: 10.1146/annurev.bioeng.3.1.169. [PubMed] [Cross Ref]
  • Zheng J., Shen W., He D.Z.Z., Long K., Madison L.D., Dallos P. Prestin is the Motor Protein of Cochlear Outer Hair Cells Nature 2000. 405149–155.1552000Natur.405..149Z10.1038/35012009 [PubMed] [Cross Ref]
  • Dallos P., Fakler B. Prestin, a New Type of Motor Protein. Nature Rev.: Mol. Cell Biol. 2002;3:104–111. doi: 10.1038/nrm730. [PubMed] [Cross Ref]
  • Oliver D., He D.Z.Z., Klöcker N., Ludwig J., Schulte U., Waldegger S., Ruppersberg J.P., Dallos P., Fakler B. Intracellular Anions as the Voltage-Sensor of Prestin, the Outer Hair Cell Motor Protein. Science. 2001;292:2340–2343. doi: 10.1126/science.1060939. [PubMed] [Cross Ref]
  • Ashmore, J.F.: Forward and Reverse Transduction in Guinea-pig Outer Hair Cells: The Cellular Basis of the Cochlear Amplifier, Neurosci. Res. Suppl. 12 (1990), S39–S50.
  • Santos-Sachhi J. Reversible Inhibition of Voltage-Dependent Outer Hair Cell Motility and Capacitance. J. Neurosci. 1991;11:3096–3110. [PubMed]
  • Rabbitt R.D., Ayliffe H.E., Christensen D., Pamarthy K., Durney C., Clifford S., Brownell W.E. Evidence of Piezoelectric Resonance in Isolated Outer Hair Cells. Biophys. J. 2005;88:2257–2265. doi: 10.1529/biophysj.104.050872. [PubMed] [Cross Ref]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.