Search tips
Search criteria 


Logo of headpainSpringerOpen.comSubmit OnlineRegisterThis journalThis article
J Headache Pain. 2009 April; 10(2): 77–84.
Published online 2009 February 10. doi:  10.1007/s10194-008-0095-x
PMCID: PMC3451650

Cortical inhibition and habituation to evoked potentials: relevance for pathophysiology of migraine


Dysfunction of neuronal cortical excitability has been supposed to play an important role in etiopathogenesis of migraine. Neurophysiological techniques like evoked potentials (EP) and in the last years non-invasive brain stimulation techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation gave important contribution to understanding of such issue highlighting possible mechanisms of cortical dysfunctions in migraine. EP studies showed impaired habituation to repeated sensorial stimulation and this abnormality was confirmed across all sensorial modalities, making defective habituation a neurophysiological hallmark of the disease. TMS was employed to test more directly cortical excitability in visual cortex and then also in motor cortex. Contradictory results have been reported pointing towards hyperexcitability or on the contrary to reduced preactivation of sensory cortex in migraine. Other experimental evidence speaks in favour of impairment of inhibitory circuits and analogies have been proposed between migraine and conditions of sensory deafferentation in which down-regulation of GABA circuits is considered the more relevant pathophysiological mechanism. Whatever the mechanism involved, it has been found that repeated sessions of high-frequency rTMS trains that have been shown to up-regulate inhibitory circuits could persistently normalize habituation in migraine. This could give interesting insight into pathophysiology establishing a link between cortical inhibition and habituation and opening also new treatment strategies in migraine.

Full Text

The Full Text of this article is available as a PDF (220K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Pietrobon D. Migraine: new molecular mechanisms. Neuroscientist. 2005;11:373–386. doi: 10.1177/1073858405275554. [PubMed] [Cross Ref]
2. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9:344–352. doi: 10.1002/ana.410090406. [PubMed] [Cross Ref]
3. Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98:4687–4692. doi: 10.1073/pnas.071582498. [PubMed] [Cross Ref]
4. Pietrobon D. Familial hemiplegic migraine. Neurotherapeutics. 2007;4:274–284. doi: 10.1016/j.nurt.2007.01.008. [PubMed] [Cross Ref]
5. Bolay H, Reuter U, Dunn AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8:136–142. doi: 10.1038/nm0202-136. [PubMed] [Cross Ref]
6. Schoenen J, Ambrosini A, Sándor PS, Maertens de Noordhout A. Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin Neurophysiol. 2003;114:955–972. doi: 10.1016/S1388-2457(03)00024-5. [PubMed] [Cross Ref]
7. Schoenen J. Neurophysiological features of the migrainous brain. Neurol Sci. 2006;27(suppl 2):S77–S81. doi: 10.1007/s10072-006-0575-1. [PubMed] [Cross Ref]
8. Coppola G, Pierelli F, Schoenen J (2008) Habituation and migraine. Neurobiol Learn Mem [Epub ahead of print]
9. Stankewitz A, May A. Cortical excitability and migraine. Cephalalgia. 2007;27:1454–1456. doi: 10.1111/j.1468-2982.2007.01503.x. [PubMed] [Cross Ref]
10. Sandor PS. Migraine excitability. Cephalalgia. 2007;27(12):1440–1441. doi: 10.1111/j.1468-2982.2007.01501.x. [PubMed] [Cross Ref]
11. Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;27:1427–1439. doi: 10.1111/j.1468-2982.2007.01500.x. [PubMed] [Cross Ref]
12. Aurora SK, Barrodale P, Chronicle EP, Mulleners WM. Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache. 2005;45:546–552. doi: 10.1111/j.1526-4610.2005.05108.x. [PubMed] [Cross Ref]
13. Brighina F, Fierro B. Cortical hypoactivity or reduced efficiency of cortical inhibition in migraine? Cephalalgia. 2007;27:187–188. doi: 10.1111/j.1468-2982.2007.01276_1.x. [PubMed] [Cross Ref]
14. Valeriani M, Fierro B, Brighina F. Brain excitability in migraine: hyperexcitability or inhibited inhibition? Pain. 2007;132:219–220. doi: 10.1016/j.pain.2007.08.016. [PubMed] [Cross Ref]
15. Schoenen J, Wang W, Albert A, Delwaide PJ. Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol. 1995;2:115–122. doi: 10.1159/000096880. [Cross Ref]
16. Tommaso M. Laser-evoked potentials in primary headaches and cranial neuralgias. Expert Rev Neurother. 2008;8:1339–1345. doi: 10.1586/14737175.8.9.1339. [PubMed] [Cross Ref]
17. Marinis M, Pujia A, Natale L, D’arcangelo E, Accornero N. Decreased habituation of the R2 component of the blink reflex in migraine patients. Clin Neurophysiol. 2003;114:889–893. doi: 10.1016/S1388-2457(03)00010-5. [PubMed] [Cross Ref]
18. Katsarava Z, Giffin N, Diener H, Kaube H. Abnormal habituation of ‘nociceptive’ blink reflex in migraine—evidence for increased excitability of trigeminal nociception. Cephalalgia. 2003;23:814–819. doi: 10.1046/j.1468-2982.2003.00591.x. [PubMed] [Cross Ref]
19. Di Clemente L, Coppola G, Magis D, Fumal A, Pasqua V, Schoenen J. Nociceptive blink reflex and visual evoked potential habituations are correlated in migraine. Headache. 2005;45:1388–1393. [PubMed]
20. Di Clemente L, Coppola G, Magis D, Fumal A, Pasqua V, Di Piero V, Schoenen J. Interictal habituation deficit of the nociceptive blink reflex: an endophenotypic marker for presymptomatic migraine? Brain. 2007;130:765–770. doi: 10.1093/brain/awl351. [PubMed] [Cross Ref]
21. Schoenen J. Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation? Biomed Pharmacother. 1996;50:71–78. doi: 10.1016/0753-3322(96)84716-0. [PubMed] [Cross Ref]
22. Afra J, Proietti Cecchini A, Pasqua V, Albert A, Schoenen J. Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain. 1998;121:233–241. doi: 10.1093/brain/121.2.233. [PubMed] [Cross Ref]
23. Ambrosini A, Rossi P, Pasqua V, Pierelli F, Schoenen J. Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain. 2003;126(Pt 9):2009–2015. doi: 10.1093/brain/awg206. [PubMed] [Cross Ref]
24. Ozkul Y, Uckardes A. Median nerve somatosensory evoked potentials in migraine. Eur J Neurol. 2002;9:227–232. doi: 10.1046/j.1468-1331.2002.00387.x. [PubMed] [Cross Ref]
25. Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, Pasqua V, et al. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005;128:98–103. doi: 10.1093/brain/awh334. [PubMed] [Cross Ref]
26. Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P, et al. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;27:1323–1330. doi: 10.1111/j.1468-2982.2007.01440.x. [PubMed] [Cross Ref]
27. Fregni F, Pascual-Leone A. Technology insight: non-invasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–393. doi: 10.1038/ncpneuro0530. [PubMed] [Cross Ref]
28. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 1998;50:1111–1114. [PubMed]
29. Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Visual cortex excitability in migraine with and without aura. Headache. 2001;41:565–572. doi: 10.1046/j.1526-4610.2001.041006565.x. [PubMed] [Cross Ref]
30. Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Suppression of perception in migraine: evidence for reduced inhibition in the visual cortex. Neurology. 2001;56:178–183. [PubMed]
31. Aurora SK, Chronicle EP. Migraine’s magnetic attraction. Lancet Neurol. 2002;1:211. doi: 10.1016/S1474-4422(02)00097-2. [PubMed] [Cross Ref]
32. Battelli L, Black KR, Wray SH. Transcranial magnetic stimulation of visual areaV5 in migraine. Neurology. 2002;58:1066–1069. [PubMed]
33. Antal A, Arlt S, Nitsche MA, Chadaide Z, Paulus W. Higher variability of phosphene thresholds in migraineurs than in controls: a consecutive transcranial magnetic stimulation study. Cephalalgia. 2006;26:865–870. doi: 10.1111/j.1468-2982.2006.01132.x. [PubMed] [Cross Ref]
34. Afra J, Mascia A, Gerard P, Maertens de Noordhout A, Schoenen J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol. 1998;44:209–215. doi: 10.1002/ana.410440211. [PubMed] [Cross Ref]
35. Bohotin V, Fumal A, Vandenheede M, Bohotin C, Schoenen J. Excitability of visual V1–V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia. 2003;23:264–270. doi: 10.1046/j.1468-2982.2003.00475.x. [PubMed] [Cross Ref]
36. Lo YL, Lum SY, Fook-Chong S, Cui SL, Siow HC. Clinical correlates of phosphene perception in migraine without aura: an Asian study. J Neurol Sci. 2008;15(264):93–96. doi: 10.1016/j.jns.2007.07.026. [PubMed] [Cross Ref]
37. Bohotin V, Fumal A, Vandenheede M, Gerard P, Bohotin C, Maertens de Noordhout A, Schoenen J. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain. 2002;125:912–922. doi: 10.1093/brain/awf081. [PubMed] [Cross Ref]
38. Brighina F, Piazza A, Daniele O, Fierro B. Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp Brain Res. 2002;145:177–181. doi: 10.1007/s00221-002-1096-7. [PubMed] [Cross Ref]
39. Fierro B, Ricci R, Piazza A, Scalia S, Giglia G, Vitello G, Brighina F. 1 Hz rTMS enhances extrastriate cortex activity in migraine: evidence of a reduced inhibition? Neurology. 2003;61:1446–1448. [PubMed]
40. Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG. Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex. 2000;10:529–534. doi: 10.1093/cercor/10.5.529. [PubMed] [Cross Ref]
41. Bolla M, Coppola G, Pasqua V, Gerardy PY, Kazadi EK, Magis D, Schoenen J. Conditioning by high frequency visual stimuli of the visual evoked potential in healthy volunteers and migraineurs. Cephalalgia. 2007;27:715.
42. Mulleners WM, Chronicle EP, Vredeveld JW, Koehler PJ. Visual cortex excitability in migraine before and after valproate prophylaxis: a pilot study using TMS. Eur J Neurol. 2002;9(1):35–40. doi: 10.1046/j.1468-1331.2002.00334.x. [PubMed] [Cross Ref]
43. Palmer JE, Chronicle EP, Rolan P, Mulleners WM. Cortical hyperexcitability is cortical under-inhibition: evidence from a novel functional test of migraine patients. Cephalalgia. 2000;20:525–532. doi: 10.1046/j.1468-2982.2000.00075.x. [PubMed] [Cross Ref]
44. Shepherd AJ. Increased visual after-effects following pattern adaptation in migraine: a lack of intracortical excitation? Brain. 2001;124:2310–2318. doi: 10.1093/brain/124.11.2310. [PubMed] [Cross Ref]
45. Shepherd AJ. Local and global motion after-effects are both enhanced in migraine, and the underlying mechanisms differ across cortical areas. Brain. 2006;129:1833–1843. doi: 10.1093/brain/awl124. [PubMed] [Cross Ref]
46. Brighina F, Giglia G, Scalia S, Francolini M, Palermo A, Fierro B. Facilitatory effects of 1 Hz rTMS in motor cortex of patients affected by migraine with aura. Exp Brain Res. 2005;161:34–38. doi: 10.1007/s00221-004-2042-7. [PubMed] [Cross Ref]
47. Werhahn KJ, Wiseman K, Herzog J, Förderreuther S, Dichgans M, Straube A. Motor cortex excitability in patients with migraine with aura and hemiplegic migraine. Cephalalgia. 2000;20:45–50. doi: 10.1046/j.1468-2982.2000.00011.x. [PubMed] [Cross Ref]
48. Aurora SK, al-Sayeed F, Welch KM. The cortical silent period is shortened in migraine with aura. Cephalalgia. 1999;19:708–712. doi: 10.1046/j.1468-2982.1999.019008708.x. [PubMed] [Cross Ref]
49. Curra A, Pierelli F, Coppola G, Barbanti P, Buzzi MG, Galeotti F, Serrao M, Truini A, Casal C, Pauri F, Cruccu G. Shortened cortical silent period in facial muscles of patients with migraine. Pain. 2007;132:124–131. doi: 10.1016/j.pain.2007.05.009. [PubMed] [Cross Ref]
50. Chadaide Z, Arlt S, Antal A, Nitsche MA, Lang N, Paulus W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia. 2007;27:833–839. doi: 10.1111/j.1468-2982.2007.01337.x. [PubMed] [Cross Ref]
51. Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci. 2006;26:10569–10576. doi: 10.1523/JNEUROSCI.0079-06.2006. [PubMed] [Cross Ref]
52. De Vito A, Gastaldo E, Tugnoli V, Eleopra R, Casula A, Tola MR, Granieri E, Quatrale R (2009) Effect of slow rTMS of motor cortex on the excitability of the blink reflex: a study in healthy humans. Clin Neurophysiol 120:174–180.
53. Lambert GA, Zagami AS (2008) The mode of action of migraine triggers: a hypothesis. Headache [Epub ahead of print]
54. Lambert GA, Hoskin KL, Zagami AS. Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia. 2008;28:640–652. doi: 10.1111/j.1468-2982.2008.01572.x. [PubMed] [Cross Ref]
55. Sanes JN, Donoghue JP. Static and dynamic organization of motor cortex. Adv Neurol. 1997;73:277–296. [PubMed]
56. Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251:944–947. doi: 10.1126/science.2000496. [PubMed] [Cross Ref]
57. Kirkwood A, Bear MF. Hebbian synapses in visual cortex. J Neurosci. 1994;14:1634–1645. [PubMed]
58. Ziemann U, Corwell B, Cohen LG. Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci. 1998;18:1115–1123. [PubMed]
59. Ziemann U, Hallett M, Cohen LG. Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci. 1998;18:7000–7007. [PubMed]
60. Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A. Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. J Physiol. 2005;565(2):659–665. doi: 10.1113/jphysiol.2004.080184. [PubMed] [Cross Ref]
61. Hendry SH, Fuchs J, deBlas AL, Jones EG. Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. J Neurosci. 1990;10:2438–2450. [PubMed]
62. Jones EG. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex. 1993;3:361–372. doi: 10.1093/cercor/3.5.361-a. [PubMed] [Cross Ref]
63. Rosier AM, Arckens L, Demeulemeester H, Orban GA, Eysel UT, Wu YJ, Vandesande F. Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J Comp Neurol. 1995;359:476–489. doi: 10.1002/cne.903590309. [PubMed] [Cross Ref]
64. Vidyasagar TR. Pattern adaptation in cat visual cortex is a co-operative phenomenon. Neuroscience. 1990;36:175–179. doi: 10.1016/0306-4522(90)90360-G. [PubMed] [Cross Ref]
65. McLean J, Palmer LA. Contrast adaptation and excitatory amino acid receptors in cat striate cortex. Visual Neurosci. 1996;13:1069–1087. doi: 10.1017/S0952523800007720. [Cross Ref]
66. Gilbert CD. Adult Cortical Dynamics Physiol. Rev. 1998;78:467–485.
67. Le Roux N, Amar M, Moreau A, Baux G, Fossier P. Impaired GABAergic transmission disrupts normal homeostatic plasticity in rat cortical networks. Eur J Neurosci. 2008;27:3244–3256. doi: 10.1111/j.1460-9568.2008.06288.x. [PMC free article] [PubMed] [Cross Ref]
68. Fierro B, Brighina F, D’Amelio M, Daniele O, Lupo I, Ragonese P, Palermo A, Savettieri G. Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp Brain Res. 2008;184:521–528. doi: 10.1007/s00221-007-1121-y. [PubMed] [Cross Ref]
69. Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67:1568–1574. doi: 10.1212/01.wnl.0000242731.10074.3c. [PubMed] [Cross Ref]
70. Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant’Angelo A, Romano M, Crupi D, Girlanda P, Rothwell JC, Siebner HR. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain. 2005;128:1943–1950. doi: 10.1093/brain/awh527. [PubMed] [Cross Ref]
71. Antal A, Lang N, Boros K, Nitsche M, Siebner HR, Paulus W. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with Aura. Cereb Cortex. 2008;18:2701–2705. doi: 10.1093/cercor/bhn032. [PubMed] [Cross Ref]
72. Harsing LG. The pharmacology of the neurochemical transmission in the midbrain raphe nuclei of the rat. Curr Neuropharmacol. 2006;4:313–339. doi: 10.2174/157015906778520764. [PMC free article] [PubMed] [Cross Ref]
73. Palermo A, Brighina F, Giglia G, Puma AR, Panetta ML, Fierro B. Cortical inhibition affects habituation to visual evoked potentials combined effects of light deprivation and repetitive transcranial magnetic stimulation in healthy subjects. Europ J Neurol. 2008;15(suppl 3):410.
74. Fumal A, Coppola G, Bohotin V, Gerardy PY, Seidel L, Donneau AF, Vandenheede M, Maertens de Noordhout A, Schonen J. Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia. 2006;26:143–149. doi: 10.1111/j.1468-2982.2005.01013.x. [PubMed] [Cross Ref]
75. Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, Fierro B. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci. 2004;15(227):67–71. doi: 10.1016/j.jns.2004.08.008. [PubMed] [Cross Ref]
76. Siniatchkin M, Kröner-Herwig B, Kocabiyik E, Rothenberger A. Intracortical inhibition and facilitation in migraine–a transcranial magnetic stimulation study. Headache. 2007;47:364–370. [PubMed]
77. Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B. 2002;357:1659–1673. doi: 10.1098/rstb.2002.1168. [PMC free article] [PubMed] [Cross Ref]
78. Murakami T, Sakuma K, Nomura T, Uemura Y, Hashimoto I, Nakashima K. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation. Exp Brain Res. 2008;184:339–347. doi: 10.1007/s00221-007-1103-0. [PubMed] [Cross Ref]
79. Murakami T, Sakuma K, Nomura T, Nakashima K, Hashimoto I. High-frequency oscillations change in parallel with short-interval intracortical inhibition after theta burst magnetic stimulation. Clin Neurophysiol. 2008;119:301–308. doi: 10.1016/j.clinph.2007.10.012. [PubMed] [Cross Ref]
80. Walpurger V, Hebing-Lennartz G, Denecke H, Pietrowsky R. Habituation deficit in auditory event-related potentials in tinnitus complainers. Hear Res. 2003;181(1–2):57–64. doi: 10.1016/S0378-5955(03)00172-2. [PubMed] [Cross Ref]
81. Shepherd AJ. Colour vision in migraine: selective deficits for S-cone discriminations. Cephalalgia. 2004;25:412–423. doi: 10.1111/j.1468-2982.2004.00831.x. [PubMed] [Cross Ref]
82. Grosser K, Oelkers R, Hummel T, Geisslinger G, Brune K, Kobal G, Lötsch J. Olfactory and trigeminal event-related potentials in migraine. Cephalalgia. 2000;20:621–631. doi: 10.1046/j.1468-2982.2000.00094.x. [PubMed] [Cross Ref]
83. Bolay H, Bayazit YA, Gündüz B, Ugur AK, Akçali D, Altunyay S, Ilica S, Babacan A. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study. Cephalalgia. 2008;28:309–317. doi: 10.1111/j.1468-2982.2008.01534.x. [PubMed] [Cross Ref]
84. Allena M, Magis D, Pasqua V, Schoenen J, Bisdorff AR. The vestibulo-collic reflex is abnormal in migraine. Cephalalgia. 2007;27:1150–1155. doi: 10.1111/j.1468-2982.2007.01414.x. [PubMed] [Cross Ref]
85. Roceanu A, Allena M, Pasqua V, Bisdorff A, Schoenen J. Abnormalities of the vestibulo-collic reflex are similar in migraineurs with and without vertigo. Cephalalgia. 2008;28:988–990. doi: 10.1111/j.1468-2982.2008.01641.x. [PubMed] [Cross Ref]
86. Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jägle H, Wandell BA. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nat Neurosci. 2002;5:364–370. doi: 10.1038/nn817. [PubMed] [Cross Ref]
87. Eggermont JJ (2006) Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta Otolaryngol Suppl (556):9–12.
88. Ridder D, Mulder G, Verstraeten E, Seidman M, Elisevich K, Sunaert S, Kovacs S, Kelen K, Heyning P, Moller A. Auditory cortex stimulation for tinnitus. Acta Neurochir Suppl. 2007;97:451–462. doi: 10.1007/978-3-211-33081-4_52. [PubMed] [Cross Ref]
89. Brozoski TJ, Spires TJ, Bauer CA. Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. J Assoc Res Otolaryngol. 2007;8:105–118. doi: 10.1007/s10162-006-0067-2. [PMC free article] [PubMed] [Cross Ref]
90. Alkhatib A, Biebel UW, Smolders JW. Reduction of inhibition in the inferior colliculus after inner hair cell loss. Neuroreport. 2006;17:1493–1497. doi: 10.1097/ [PubMed] [Cross Ref]
91. Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci. 2000;23:1–37. doi: 10.1146/annurev.neuro.23.1.1. [PubMed] [Cross Ref]

Articles from The Journal of Headache and Pain are provided here courtesy of Springer