Search tips
Search criteria 


Logo of cytotechspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
Cytotechnology. 1998 November; 28(1-3): 163–175.
PMCID: PMC3449847

Mammalian cell retention devices for stirred perfusion bioreactors


Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the reliability of the cell retention device. Current retention systems include cross-flow membrane filters, spin-filters, inclined settlers, continuous centrifuges and ultrasonic separators. The relative merits and limitations of these technologies for cell retention and their suitability for large-scale perfusion are discussed.

Full Text

The Full Text of this article is available as a PDF (237K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arathoon WR, Birch JR. Large-scale cell culture in biotechnology. Science. 1986;232:1390–1395. [PubMed]
  • Avgerinos GC, Drapeau D, Socolow JS, Mao J, Hsiao K, Broeze RJ. Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/technol. 1990;8:54–58. doi: 10.1038/nbt0190-54. [PubMed] [Cross Ref]
  • Batt BC, Davis RH, Kompala DS. Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog. 1990;6:458–464. doi: 10.1021/bp00006a600. [PubMed] [Cross Ref]
  • Belfort G. Membrane modules: Comparisons of different configurations using fluid mechanics. J Membr Sci. 1988;35:245–270. doi: 10.1016/S0376-7388(00)80299-9. [Cross Ref]
  • Benes E, Hager F, Bolek W and Gröschl M (1991) Separation of dispersed particles by drifting ultrasonic resonance fields. Ultrason. Int. Conf., Le Touquet, France, Butterworth-Heinemann, 167-170.
  • Bibila TA, Robinson DK. In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog. 1995;11:1–13. doi: 10.1021/bp00031a001. [PubMed] [Cross Ref]
  • Bodeker BGD, Newcomb R, Yuan P, Braufman A, Kelsey W. Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation. In: Spier RE, Griffiths JB, Berthold W, editors. Animal cell technology: Products of today, prospects for tomorrow. Oxford: Butterworth-Heinemann; 1994. pp. 580–583.
  • Bowen WR, Gan Q. Properties of microfiltration membrane: the effects of adsorption and shear on the recovery of an enzyme. Biotechnol Bioeng. 1992;40:491–497. doi: 10.1002/bit.260400407. [PubMed] [Cross Ref]
  • Davis RH, Acrivos A. Sedimentation of noncolloidal particles at low Reynolds numbers. Ann Rev Fluid Mech. 1985;17:91–118. doi: 10.1146/annurev.fl.17.010185.000515. [Cross Ref]
  • Davison BH, San K-Y, Stephanopoulos G. Stable competitive coexistence in a continuous fermenter with size selective properties. Biotechnol Prog. 1985;1:260–268. doi: 10.1002/btpr.5420010410. [PubMed] [Cross Ref]
  • Dela Brois e. D., Noiseux M, Massie B, Lemieux R. Hybridoma perfusion systems: A comparison study. Biotechnol Bioeng. 1992;40:25–32. doi: 10.1002/bit.260400105. [PubMed] [Cross Ref]
  • Deo YM, Mahadevan MD, Fuchs R. Practical considerations in operation and scale up of spin filter based bioreactors for monoclonal antibody production. Biotechnol Prog. 1996;12:57–64. doi: 10.1021/bp950079p. [PubMed] [Cross Ref]
  • Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Gröschl M, Benes E. A novel ultrasonic resonance field device for the retention of animal cells. Biotechnol Prog. 1994;10:428–32. doi: 10.1021/bp00028a600. [PubMed] [Cross Ref]
  • Drew DA, Schonberg JA, Belfort G. Lateral inertial migration of a small sphere in fast laminar flow through a small membrane duct. Chem Eng Sci. 1991;46:3219–3224. doi: 10.1016/0009-2509(91)85023-Q. [Cross Ref]
  • Esclade LRJ, Carrel S, Peringer P. Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng. 1991;38:159–168. doi: 10.1002/bit.260380208. [PubMed] [Cross Ref]
  • Favre E, Thaler T. An engineering analysis of rotating sieves for hybridoma cell retention in stirred tank bioreactors. Cytotechnol. 1992;9:11–19. [PubMed]
  • Forstrom RJ, Bartlet K, Blackshear PL, Jr, Wood T. Formed elements deposition onto filtering walls. Trans Am Soc Artif Intern Org. 1975;21:602. [PubMed]
  • Frank A, Bolek W, Groeschl M, Burger W and Benes E (1993) Separation of suspended particles by use of the inclined resonator concept. Proc. Ultrason. Int. Conf., Vienna, Austria, Butterworth-Heinemann, Oxford, 519-522.
  • Frenander U, Jonsson AS. Cell harvesting by cross-flow microfiltration using a shear enhanced module. Biotechnol Bioeng. 1996;52:397–403. doi: 10.1002/(SICI)1097-0290(19961105)52:3<397::AID-BIT5>3.0.CO;2-F. [PubMed] [Cross Ref]
  • Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E. Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog. 1996;12:73–76. doi: 10.1021/bp950040k. [PubMed] [Cross Ref]
  • Glacken MW, Fleischaker RJ, Sinskey AJ. Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng. 1986;28:1376–1389. doi: 10.1002/bit.260280912. [PubMed] [Cross Ref]
  • Gor'kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6: 773-775.
  • Henry KL, Davis RH, Taylor AL. Continuous recombinant bacterial fermentations utilizing selective flocculation and recycle. Biotechnol Prog. 1990;6:7–12. doi: 10.1021/bp00001a002. [PubMed] [Cross Ref]
  • Hiller G, Clark D, Blanch H. Cell retention chemostat studies of hybridoma cells. Analysis of hybridoma growth and metabolism in continuous suspension culture on serum free medium. Biotechnol Bioeng. 1993;42:185–195. doi: 10.1002/bit.260420206. [PubMed] [Cross Ref]
  • Himmelfarb P, Thayer PS, Martin HE. Spin-filter culture: the propagation of mammalian cells in suspension. Science. 1969;164:555–557. [PubMed]
  • Hodgson Centrifugation takes a new turn. Bio/technol. 1991;9:628–629. doi: 10.1038/nbt0791-628. [PubMed] [Cross Ref]
  • Hülscher M, Scheibler U, Onken U. Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng. 1992;39:442–446. doi: 10.1002/bit.260390410. [PubMed] [Cross Ref]
  • Ito Y, Suaudeau J, Bowman RL. New flow-through centrifuge without rotating seals applied to plasmapheresis. Science. 1975;189:999–1000. [PubMed]
  • Jackson LR, Trudel LJ, Fox JG, Lipman NS. Evaluation of hollow-fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. J Immunol Methods. 1996;189:217–231. doi: 10.1016/0022-1759(95)00251-0. [PubMed] [Cross Ref]
  • Jäger V. A novel perfusion system for the large-scale cultivation of animal cells based on a continuous flow centrifuge. In: Spier RE, Griffiths JB, MacDonald C, editors. Animal cell technology: Developments, processes, products. Oxford: Butterworth-Hienemann; 1992. pp. 397–402.
  • Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA. Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein free medium. Biotechnol Prog. 1996;12:855–864. doi: 10.1021/bp960072n. [PubMed] [Cross Ref]
  • Kadouri A, Spier RE. Some myths and messages concerning the batch and continuous culture of animal cells. Cytotechnol. 1997;24:89–98. doi: 10.1023/A:1007932614011. [PMC free article] [PubMed] [Cross Ref]
  • Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y. High-density culture of FM-3A cells using a bioreactor with an external tangential filtration device. Cytotechnol. 1994;14:61–66. doi: 10.1007/BF00772196. [PubMed] [Cross Ref]
  • Kelly ST, Zydney AL. Protein fouling during micro-filtration: comparative behavior of different model proteins. Biotechnol Bioeng. 1997;55:91–100. doi: 10.1002/(SICI)1097-0290(19970705)55:1<91::AID-BIT11>3.0.CO;2-6. [PubMed] [Cross Ref]
  • Kilburn DG, Clarke DJ, Coakley WT, Bardsley DW. Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng. 1989;34:559–562. doi: 10.1002/bit.260340415. [PubMed] [Cross Ref]
  • Maiorella B, Dorin G, Carion A, Harano D. Crossflow microfiltration of animal cells. Biotechnol Bioeng. 1991;37:121–126. doi: 10.1002/bit.260370205. [PubMed] [Cross Ref]
  • Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T, Parekh R. Effect of culture conditions on IMantibody eistructure,pharmacokinetics and activity. BioTechnol. 1993;11:387–392. doi: 10.1038/nbt0393-387. [PubMed] [Cross Ref]
  • Marino M, Corti A, Ippolito A, Cassani G, Fassina G. Effect of bench-scale culture conditions on murine IgG heterogeneity. Biotechnol Bioeng. 1997;54:17–25. doi: 10.1002/(SICI)1097-0290(19970405)54:1<17::AID-BIT2>3.0.CO;2-0. [PubMed] [Cross Ref]
  • Martin N, Brennan A, Denome L, Shaevitz J. High productivity in mammalian cell culture. Bio/technol. 1989;5:838–840. doi: 10.1038/nbt0887-838. [Cross Ref]
  • Mercille S, Johnson M, Lemieux R, Massie B. Filtration-based perfusion of hybridoma cultures in protein free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnology and Bioengineering. 1994;43:833–846. doi: 10.1002/bit.260430902. [PubMed] [Cross Ref]
  • Mercille S, Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [PubMed] [Cross Ref]
  • Piret JM, Devens DA, Cooney CL. Nutrient and metabolite gradients in mammalian hollow-fiber bioreactors. Can J Chem Eng. 1991;69:421–428. doi: 10.1002/cjce.5450690204. [Cross Ref]
  • Pui PWS, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG, Piret JM. Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog. 1995;11:146–52. doi: 10.1021/bp00032a005. [PubMed] [Cross Ref]
  • Rebsamen E, Goldinger W, Scheirer W, Merten O-W, Pálfi GE. Use of a dynamic filtration method for separation of animal cells. Develop Biol Standard. 1987;66:273–277. [PubMed]
  • Reuveny S, Velez D, Miller L, Macmillan JD. Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermenters. J Immunol Meth. 1986;86:61–69. doi: 10.1016/0022-1759(86)90265-6. [Cross Ref]
  • Roth G, Smith CE, Schoofs GM, Montgomery JLA and Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. BioPharm October: 30-35.
  • Searles JA, Todd P, Kompala DS. Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog. 1994;10:198–206. doi: 10.1021/bp00026a600. [PubMed] [Cross Ref]
  • Shi Y, Ryu DDY, Park SH. Performance of mammalian cell culture bioreactor with a new impeller design. Biotechnol Bioeng. 1992;40:260–270. doi: 10.1002/bit.260400210. [PubMed] [Cross Ref]
  • Shitani Y, Kohno Y-I, Sawada H, Kitano K. Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnol. 1991;6:197–208. doi: 10.1007/BF00624758. [PubMed] [Cross Ref]
  • Stevens J, Eickel S, Onken U. Lamellar clarifier-a device for animal cell retention in perfusion culture systems. In: Spier RE, Griffiths JB, Berthold W, editors. Animal cell technology: Products of today, prospects for tomorrow. Oxford: Butterworth-Heinemann; 1994. pp. 234–239.
  • Takazawa Y, Tokashiki M. High cell density perfusion culture of mouse-human hybridoma. Appl Microbiol Biotechnol. 1989;32:280–284. doi: 10.1007/BF00184974. [Cross Ref]
  • Thompson KJ, Wilson JS. A compact gravitational settling device for cell retention. In: Spier RE, Griffiths JB, Berthold W, editors. Animal cell technology: Products of today, prospects for tomorrow. Oxford: Butterworth-Heinemann; 1994. pp. 227–229.
  • Tokashiki M, Arai T, Hamamoto K, Ishimaru K. High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnol. 1990;3:239–244. doi: 10.1007/BF00365487. [PubMed] [Cross Ref]
  • Tolbert WR, Feder J, Kimes RC. Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro. 1981;17:885–890. [PubMed]
  • Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM. Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/technol. 1994;12:281–284. doi: 10.1038/nbt0394-281. [PubMed] [Cross Ref]
  • Van Reis R, Leonard LC, Hsu CC, Builder SE. Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol Bioeng. 1991;38:413–422. doi: 10.1002/bit.260380411. [PubMed] [Cross Ref]
  • Varecka R, Scheirer W. Use of a rotating wire cage for retention of animal cells in a perfusion fermenter. Dev Biol Stand. 1987;66:269–272. [PubMed]
  • Velez D, Miller L, Macmillan JD. Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng. 1989;33:938–940. doi: 10.1002/bit.260330721. [PubMed] [Cross Ref]
  • Whitworth G, Grundy MA, Coakley WT. Transport and harvesting of suspended particles using modulated ultrasound. Ultrasonics. 1991;29:439–44. doi: 10.1016/0041-624X(91)90073-H. [PubMed] [Cross Ref]
  • Woodside SM, Bowen BD, Piret JM. Measurement of ultrasonic forces for particle-liquid separations. AIChE J. 1997;43:1727–1736. doi: 10.1002/aic.690430710. [Cross Ref]
  • Woodside SM, Piret JM, Gröschl M, Benes E, Bowen B. Acoustic force distribution in resonators for ultrasonic particle separation. AIChE J. 1998;44:1976–1986. doi: 10.1002/aic.690440905. [Cross Ref]
  • Yabannavar VM, Singh V, Connelly NV. Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng. 1992;40:925–933. doi: 10.1002/bit.260400809. [PubMed] [Cross Ref]
  • Yabannavar VM, Singh V, Connelly NV. Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng. 1994;43:159–164. doi: 10.1002/bit.260430209. [PubMed] [Cross Ref]
  • Zhang S, Handa-Corrigan A, Spier RE. A comparison of oxygenation methods for high-density perfusion cultures of animal cells. Biotechnol Bioeng. 1993;41:685–692. doi: 10.1002/bit.260410702. [PubMed] [Cross Ref]
  • Zydney AL, Colton CK. A red cell deformation model for hemolysis in cross flow membrane plasmapheresis. Chem Eng Commun. 1984;30:191–207.

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.