PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcpsBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Plant Biology
 
BMC Plant Biol. 2012; 12: 116.
Published online Jul 26, 2012. doi:  10.1186/1471-2229-12-116
PMCID: PMC3444351
GiA Roots: software for the high throughput analysis of plant root system architecture
Reviewed by Taras Galkovskyi,1 Yuriy Mileyko,1 Alexander Bucksch,2,3 Brad Moore,4 Olga Symonova,5 Charles A Price,6 Christopher N Topp,4,7 Anjali S Iyer-Pascuzzi,4,7 Paul R Zurek,4,7 Suqin Fang,4,7,8 John Harer,1,7 Philip N Benfey,4,7 and Joshua S Weitzcorresponding author2,9
1Department of Mathematics, Duke University, Durham, NC, USA
2School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
3School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA
4Department of Biology, Duke University, Durham, NC, USA
5, Institute of Science and Technology, Vienna, Austria
6Department of Plant Biology, University of Western Australia, Perth, Australia
7Duke Center for Systems Biology, Duke University, Durham, NC, USA
8Root Biology Center, South China Agricultural University, Guangzhou, China
9School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
corresponding authorCorresponding author.
Taras Galkovskyi: galkovsky/at/gmail.com; Yuriy Mileyko: yuriy/at/gmail.com; Alexander Bucksch: bucksch/at/gatech.edu; Brad Moore: bm93/at/duke.edu; Olga Symonova: olga.symonova/at/gmail.com; Charles A Price: charles.price/at/uwa.edu.au; Christopher N Topp: chris.topp/at/duke.edu; Anjali S Iyer-Pascuzzi: asi2/at/duke.edu; Paul R Zurek: prz/at/duke.edu; Suqin Fang: sf98/at/duke.edu; John Harer: harer/at/math.duke.edu; Philip N Benfey: philip.benfey/at/duke.edu; Joshua S Weitz: jsweitz/at/gatech.edu
Received January 13, 2012; Accepted June 28, 2012.
Abstract
Background
Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks.
Results
We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user.
Conclusions
We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
Articles from BMC Plant Biology are provided here courtesy of
BioMed Central