PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 September 1; 68(Pt 9): o2809.
Published online 2012 August 31. doi:  10.1107/S160053681203663X
PMCID: PMC3435835

1,2-Bis{2-[2-(trimethyl­sil­yl)ethyn­yl]phen­yl}ethane-1,2-dione

Abstract

The title compound, C24H26O2Si2, has C 2 crystallographic symmetry. The dihedral angle between the aromatic rings is 84.5 (2)°. The acetyl­ene group is slightly non-linear, with angles at the acetyl­ene C atoms of 175.7 (2) and 177.0 (2)°. In the crystal structure, only van de Waals interactions occur.

Related literature  

For the structure of benzil, see Brown & Sadanaga (1965 [triangle]); Gabe et al. (1981 [triangle]); More et al. (1987 [triangle]). For the synthesis see: Garcia et al. (1995 [triangle]). For the determination of absolute configuration from Bijvoet pairs, see: Hooft et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o2809-scheme1.jpg

Experimental  

Crystal data  

  • C24H26O2Si2
  • M r = 402.63
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-68-o2809-efi1.jpg
  • a = 9.2241 (1) Å
  • c = 23.7787 (5) Å
  • V = 1752.13 (5) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 120 K
  • 0.25 × 0.25 × 0.25 mm

Data collection  

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.959, T max = 0.959
  • 23012 measured reflections
  • 3410 independent reflections
  • 2325 reflections with I > 2σ(I)
  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.103
  • S = 1.00
  • 3410 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1419 Bijvoet pairs
  • Flack parameter: 0.0 (1)

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681203663X/bx2422sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203663X/bx2422Isup2.hkl

Supplementary material file. DOI: 10.1107/S160053681203663X/bx2422Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents. We thank Dr J. Gabriel Garcia for providing the sample.

supplementary crystallographic information

Comment

The title compound (I), (C12H13OSi)2, lies on a crystallographic twofold axis. The phenyl ring is planar - all six C atoms have δ/σ < 0.2. However, carbonyl carbon C12 is 0.217 (5) Å above the C11—O1—C12' plane, and the C10—C11—C12—O1 torsion angle is 19.5 (3)°. The ethanedione C12(sp2)—C12(sp2)' distance of 1.538 (4) Å is somewhat longer than expected, but is consistent with values reported for benzil, which average 1.536 (10) Å. The acetylenic moiety is non-linear with deviations from a weighted least-squares line of δ(Si1) = 0.0034 (15), δ(C4) = 0.054 (4), δ(C5) = 0.049 (4), and δ(C6) = 0.047 (4) Å. The crystal structure is stablized by van der Waals interactions.

Experimental

The title compound was supplied by J. Gabriel Garcia, having been synthesized from 1,2-bis-(2-bromophenyl)-ethane-1,2-dione and trimethylsilyl acetylene (Garcia et al., 1995).

Refinement

The space group assignment and absolute structure are based on analysis of 1419 Bijvoet pairs, Flack (1983) parameter x = 0.0 (1), Hooft et al. (2008) parameter y = -0.04 (7), and Hooft P2(true) = 1.000.

All H atoms were placed in calculated positions with C—H distances of 0.95 (aromatic) and 0.98 Å (methyl) and Uiso = 1.2 or 1.5 Ueq of the attached sp2 or sp3 C atom, and thereafter treated as riding. A torsional parameter was refined for each methyl group.

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids)

Crystal data

C24H26O2Si2Dx = 1.145 Mg m3
Mr = 402.63Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3221Cell parameters from 3424 reflections
Hall symbol: P 32 2"θ = 2.5–30.0°
a = 9.2241 (1) ŵ = 0.17 mm1
c = 23.7787 (5) ÅT = 120 K
V = 1752.13 (5) Å3Rhombohedron, yellow
Z = 30.25 × 0.25 × 0.25 mm
F(000) = 642

Data collection

Nonius KappaCCD diffractometer3410 independent reflections
Radiation source: sealed tube2325 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.047
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.6°
ω and [var phi] scansh = −12→12
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)k = −10→10
Tmin = 0.959, Tmax = 0.959l = −31→33
23012 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3410 reflectionsΔρmax = 0.25 e Å3
131 parametersΔρmin = −0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1419 Bijvoet pairs
0 constraintsFlack parameter: 0.0 (1)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4411 (3)−0.1681 (3)0.00979 (9)0.0487 (6)
H1A0.5479−0.0985−0.00950.073*
H1B0.3539−0.233−0.0180.073*
H1C0.4522−0.24470.03570.073*
C20.1985 (3)−0.1571 (4)0.09491 (10)0.0714 (8)
H2A0.2222−0.22470.12110.107*
H2B0.1022−0.23090.07140.107*
H2C0.1731−0.08150.11620.107*
C30.3475 (4)0.1018 (3)0.00053 (11)0.0802 (10)
H3A0.32090.17630.02190.12*
H3B0.25390.0314−0.02450.12*
H3C0.44870.1688−0.02190.12*
C40.5616 (2)0.1008 (2)0.09647 (7)0.0310 (4)
C50.6750 (2)0.1814 (2)0.12846 (7)0.0282 (4)
C60.8026 (2)0.2815 (2)0.16901 (6)0.0283 (4)
C70.8414 (2)0.4474 (2)0.17783 (8)0.0346 (5)
H70.78810.49310.15580.042*
C80.9559 (2)0.5446 (2)0.21811 (8)0.0385 (5)
H80.9820.65720.22330.046*
C91.0332 (2)0.4800 (2)0.25096 (7)0.0381 (5)
H91.11160.54790.27890.046*
C100.9970 (2)0.3169 (2)0.24337 (7)0.0352 (4)
H101.04970.27250.26640.042*
C110.8830 (2)0.2166 (2)0.20188 (7)0.0274 (4)
C120.8518 (2)0.0429 (2)0.19563 (7)0.0309 (4)
O10.88376 (18)−0.02847 (17)0.23231 (6)0.0457 (4)
Si10.38331 (7)−0.03278 (7)0.04974 (2)0.03309 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0621 (15)0.0523 (14)0.0410 (11)0.0355 (13)−0.0166 (11)−0.0167 (10)
C20.0331 (13)0.092 (2)0.0657 (15)0.0134 (14)−0.0059 (12)−0.0155 (14)
C30.108 (2)0.0446 (14)0.0940 (18)0.0423 (15)−0.0758 (18)−0.0214 (13)
C40.0351 (10)0.0292 (10)0.0311 (9)0.0178 (9)−0.0057 (8)−0.0005 (8)
C50.0316 (10)0.0258 (9)0.0288 (9)0.0156 (8)−0.0008 (8)0.0041 (8)
C60.0246 (9)0.0290 (10)0.0243 (8)0.0083 (8)0.0013 (7)0.0042 (8)
C70.0346 (11)0.0295 (11)0.0344 (10)0.0120 (9)−0.0044 (8)0.0022 (8)
C80.0361 (12)0.0273 (11)0.0401 (11)0.0068 (10)0.0020 (9)−0.0008 (8)
C90.0256 (10)0.0386 (11)0.0312 (9)0.0019 (9)−0.0042 (8)−0.0033 (8)
C100.0233 (9)0.0403 (11)0.0339 (9)0.0098 (9)−0.0013 (8)0.0075 (8)
C110.0194 (8)0.0302 (9)0.0260 (8)0.0075 (8)0.0033 (7)0.0069 (7)
C120.0196 (9)0.0329 (10)0.0361 (10)0.0101 (8)0.0025 (8)0.0105 (8)
O10.0440 (9)0.0402 (9)0.0499 (8)0.0188 (8)−0.0108 (7)0.0125 (7)
Si10.0354 (3)0.0283 (3)0.0372 (3)0.0172 (3)−0.0128 (2)−0.0072 (2)

Geometric parameters (Å, º)

C1—Si11.847 (2)C5—C61.443 (2)
C1—H1A0.98C6—C71.403 (3)
C1—H1B0.98C6—C111.401 (3)
C1—H1C0.98C7—C81.375 (3)
C2—Si11.849 (2)C7—H70.95
C2—H2A0.98C8—C91.378 (3)
C2—H2B0.98C8—H80.95
C2—H2C0.98C9—C101.380 (3)
C3—Si11.852 (2)C9—H90.95
C3—H3A0.98C10—C111.401 (2)
C3—H3B0.98C10—H100.95
C3—H3C0.98C11—C121.487 (3)
C4—C51.203 (2)C12—O11.214 (2)
C4—Si11.8522 (19)C12—C12i1.538 (4)
Si1—C1—H1A109.5C8—C7—H7119.7
Si1—C1—H1B109.5C6—C7—H7119.7
H1A—C1—H1B109.5C9—C8—C7120.52 (19)
Si1—C1—H1C109.5C9—C8—H8119.7
H1A—C1—H1C109.5C7—C8—H8119.7
H1B—C1—H1C109.5C8—C9—C10120.12 (17)
Si1—C2—H2A109.5C8—C9—H9119.9
Si1—C2—H2B109.5C10—C9—H9119.9
H2A—C2—H2B109.5C9—C10—C11120.31 (17)
Si1—C2—H2C109.5C9—C10—H10119.8
H2A—C2—H2C109.5C11—C10—H10119.8
H2B—C2—H2C109.5C6—C11—C10119.58 (17)
Si1—C3—H3A109.5C6—C11—C12123.09 (16)
Si1—C3—H3B109.5C10—C11—C12117.32 (17)
H3A—C3—H3B109.5O1—C12—C11122.93 (17)
Si1—C3—H3C109.5O1—C12—C12i115.72 (18)
H3A—C3—H3C109.5C11—C12—C12i120.33 (17)
H3B—C3—H3C109.5C3—Si1—C1109.67 (11)
C5—C4—Si1177.01 (16)C3—Si1—C2111.37 (14)
C4—C5—C6175.7 (2)C1—Si1—C2111.58 (13)
C7—C6—C11118.82 (16)C3—Si1—C4109.27 (10)
C7—C6—C5118.66 (17)C1—Si1—C4107.33 (9)
C11—C6—C5122.44 (17)C2—Si1—C4107.49 (9)
C8—C7—C6120.63 (18)
C11—C6—C7—C8−0.2 (3)C9—C10—C11—C6−1.6 (3)
C5—C6—C7—C8176.61 (16)C9—C10—C11—C12179.24 (16)
C6—C7—C8—C9−0.7 (3)C6—C11—C12—O1−159.64 (18)
C7—C8—C9—C100.5 (3)C10—C11—C12—O119.5 (3)
C8—C9—C10—C110.7 (3)C6—C11—C12—C12i32.4 (2)
C7—C6—C11—C101.3 (2)C10—C11—C12—C12i−148.44 (13)
C5—C6—C11—C10−175.35 (16)C11—C12—C12i—C11i−132.9 (2)
C7—C6—C11—C12−179.56 (16)C11—C12—C12i—O1i58.36 (11)
C5—C6—C11—C123.8 (3)O1—C12—C12i—O1i−110.4 (3)

Symmetry code: (i) xy, −y, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2422).

References

  • Brown, C. J. & Sadanaga, R. (1965). Acta Cryst. 18, 158–164.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gabe, E. J., Le Page, Y., Lee, F. L. & Barclay, L. R. C. (1981). Acta Cryst. B37, 197–200.
  • Garcia, J. G., Ramos, B., Pratt, L. M. & Rodríguez, A. (1995). Tetrahedron Lett. 36, 7391–7394.
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [PMC free article] [PubMed]
  • More, M., Odou, G. & Lefebvre, J. (1987). Acta Cryst. B43, 398–405.
  • Nonius (2000). COLLECTNonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography