PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Sep 1, 2012; 68(Pt 9): o2799.
Published online Aug 31, 2012. doi:  10.1107/S1600536812036057
PMCID: PMC3435826
5-Chloro-2-phenyl-1,3-benzothia­zole
Sammer Yousuf,a* Shazia Shah,a Nida Ambreen,a Khalid M. Khan,a and Shakil Ahmeda
aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
Correspondence e-mail: dr.sammer.yousuf/at/gmail.com
Received August 9, 2012; Accepted August 16, 2012.
Abstract
In the structure of the title compound, C13H8ClNS, the dihedral angle between the benzothia­zole ring system and the phenyl ring is 7.11 (8)°. In the crystal, mol­ecules are arranged parallel to the c axis.
Related literature  
For biological activites of benzothia­zole compounds, see: Venkatesh & Pandeya (2009 [triangle]); Sreenivasa et al. (2009 [triangle]); Kok et al. (2008 [triangle]); Siddiqui et al. (2007 [triangle]); Maharan et al. (2007 [triangle]); Pattan et al. (2005 [triangle]); Hout et al. (2004 [triangle]); Chohan et al. (2003 [triangle]); Bénéteau et al. (1999 [triangle]). For the crystal structure of benzothia­zole derivatives, see: Lakshmanan et al. (2011 [triangle]); Zhang et al. (2008 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-o2799-scheme1.jpg Object name is e-68-o2799-scheme1.jpg
Crystal data  
  • C13H8ClNS
  • M r = 245.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o2799-efi1.jpg
  • a = 7.4057 (9) Å
  • b = 5.9100 (7) Å
  • c = 25.165 (3) Å
  • β = 93.402 (3)°
  • V = 1099.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 273 K
  • 0.36 × 0.13 × 0.09 mm
Data collection  
  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.840, T max = 0.956
  • 6221 measured reflections
  • 2013 independent reflections
  • 1706 reflections with I > 2σ(I)
  • R int = 0.023
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.093
  • S = 1.04
  • 2013 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3
Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2009 [triangle]).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036057/wn2488sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036057/wn2488Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812036057/wn2488Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank OPCW, The Netherlands, and the Higher Education Commission, Pakistan (project No. 1910), for their financial support.
supplementary crystallographic information
Comment
Benzothiazoles represent an important class of heterocyclic compounds and are known to have numerous biological activities, including antimicrobial, antimalarial, anticancer, anti-inflamatory, antidiabetic, anticonvulsant, antitumor and anthelmintic properties (Venkatesh & Pandeya, 2009; Sreenivasa et al., 2009; Kok et al., 2008; Siddiqui et al., 2007; Maharan et al., 2007; Pattan et al., 2005; Hout et al., 2004; Chohan et al., 2003; Bénéteau et al., 1999). The title compound was prepared as part of an ongoing research effort to synthesize libraries of hetereocyclic compounds and evaluate thei different biological activities.
In the structure (Fig. 1) of the title compound, C13H8ClNS, the dihedral angle between the benzothiazole ring system and the phenyl ring is 7.11 (8)°. The bond lengths and angles are similar to those in structurally related benzothiazole compounds (Lakshmanan et al., 2011; Zhang et al., 2008). In the crystal structure the molecules are arranged parallel to the c-axis (Fig. 2).
Experimental
In a 50 ml round-bottomed flask 2-amino-4-chlorobenzenethiol (0.159 g, 1 mmol), benzaldehyde (0.106 g, 1 mmol), N,N-dimethylformamide (10 ml), and sodium metabisulfite (0.2 g) were added with continuous stirring and allowed to reflux for 2 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was allowed to cool at room temperature and addition of cold water produced a solid precipitate. Crystallization from ethanol afforded pure crystals of the title compound (0.245 g, 91.8% yield); these were found to be suitable for single-crystal X-ray diffraction studies.
Refinement
H atoms were positioned geometrically and constrained to ride on their parent atoms, with Csp2—H = 0.93 Å and Uiso(H)= 1.2Ueq(C).
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
Fig. 2.
The crystal packing of the title compound.
Crystal data
C13H8ClNSF(000) = 504
Mr = 245.71Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4057 (9) ÅCell parameters from 2167 reflections
b = 5.9100 (7) Åθ = 3.1–28.2°
c = 25.165 (3) ŵ = 0.50 mm1
β = 93.402 (3)°T = 273 K
V = 1099.5 (2) Å3Plate, colorless
Z = 40.36 × 0.13 × 0.09 mm
Data collection
Bruker SMART APEX CCD area-detector diffractometer2013 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.840, Tmax = 0.956k = −7→6
6221 measured reflectionsl = −30→30
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0522P)2 + 0.1614P] where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.21 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl10.26215 (9)−0.18042 (11)0.02881 (2)0.0660 (2)
S10.33963 (7)0.39652 (8)0.234075 (19)0.04489 (18)
N10.19011 (19)−0.0014 (3)0.22680 (5)0.0367 (4)
C10.2624 (3)0.3164 (3)0.35279 (8)0.0449 (5)
H1B0.31310.44790.33990.054*
C20.2426 (3)0.2922 (4)0.40663 (8)0.0519 (5)
H2A0.28000.40790.42980.062*
C30.1683 (3)0.0995 (4)0.42641 (8)0.0514 (5)
H3A0.15550.08460.46280.062*
C40.1123 (3)−0.0732 (4)0.39196 (8)0.0484 (5)
H4A0.0617−0.20400.40520.058*
C50.1315 (2)−0.0515 (3)0.33809 (7)0.0419 (4)
H5A0.0941−0.16810.31520.050*
C60.2067 (2)0.1442 (3)0.31764 (7)0.0361 (4)
C70.2333 (2)0.1595 (3)0.26047 (7)0.0349 (4)
C90.2440 (2)0.0541 (3)0.17678 (7)0.0353 (4)
C100.2208 (2)−0.0858 (3)0.13211 (7)0.0395 (4)
H10A0.1639−0.22560.13400.047*
C110.2850 (3)−0.0087 (3)0.08523 (7)0.0435 (5)
C120.3695 (3)0.2000 (4)0.08090 (8)0.0477 (5)
H12A0.41010.24590.04830.057*
C130.3932 (3)0.3391 (3)0.12465 (8)0.0457 (5)
H13A0.44980.47890.12220.055*
C140.3300 (2)0.2643 (3)0.17274 (7)0.0383 (4)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl10.0921 (5)0.0674 (4)0.0395 (3)−0.0125 (3)0.0133 (3)−0.0074 (2)
S10.0502 (3)0.0336 (3)0.0509 (3)−0.0091 (2)0.0039 (2)−0.0026 (2)
N10.0381 (9)0.0326 (9)0.0397 (8)−0.0015 (6)0.0048 (6)−0.0006 (6)
C10.0482 (12)0.0366 (11)0.0496 (11)−0.0008 (9)0.0011 (8)−0.0052 (8)
C20.0564 (13)0.0527 (14)0.0458 (11)0.0039 (10)−0.0028 (9)−0.0121 (9)
C30.0522 (12)0.0608 (14)0.0411 (10)0.0081 (10)0.0009 (9)0.0016 (9)
C40.0495 (13)0.0461 (12)0.0497 (11)0.0014 (9)0.0033 (9)0.0089 (9)
C50.0422 (11)0.0392 (11)0.0440 (10)−0.0006 (8)−0.0007 (8)−0.0034 (8)
C60.0307 (10)0.0349 (10)0.0422 (10)0.0030 (7)−0.0006 (7)−0.0025 (7)
C70.0282 (9)0.0308 (10)0.0453 (10)0.0003 (7)−0.0003 (7)−0.0011 (7)
C90.0305 (9)0.0334 (10)0.0423 (9)0.0018 (7)0.0032 (7)0.0024 (7)
C100.0418 (11)0.0343 (10)0.0427 (10)−0.0029 (8)0.0041 (8)0.0000 (8)
C110.0456 (12)0.0464 (12)0.0388 (10)0.0020 (9)0.0045 (8)0.0000 (8)
C120.0472 (12)0.0511 (13)0.0457 (11)0.0002 (9)0.0102 (8)0.0110 (9)
C130.0435 (11)0.0398 (11)0.0545 (11)−0.0034 (9)0.0078 (9)0.0080 (9)
C140.0339 (10)0.0348 (10)0.0462 (10)0.0002 (8)0.0025 (7)0.0014 (8)
Geometric parameters (Å, º)
Cl1—C111.7453 (19)C4—H4A0.9300
S1—C141.7279 (18)C5—C61.395 (3)
S1—C71.7566 (18)C5—H5A0.9300
N1—C71.301 (2)C6—C71.466 (2)
N1—C91.382 (2)C9—C101.398 (2)
C1—C21.379 (3)C9—C141.402 (2)
C1—C61.395 (3)C10—C111.376 (2)
C1—H1B0.9300C10—H10A0.9300
C2—C31.371 (3)C11—C121.390 (3)
C2—H2A0.9300C12—C131.377 (3)
C3—C41.386 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.395 (3)
C4—C51.377 (3)C13—H13A0.9300
C14—S1—C788.93 (8)N1—C7—S1115.77 (13)
C7—N1—C9110.29 (15)C6—C7—S1120.63 (13)
C2—C1—C6120.18 (19)N1—C9—C10124.31 (16)
C2—C1—H1B119.9N1—C9—C14115.66 (15)
C6—C1—H1B119.9C10—C9—C14120.02 (15)
C3—C2—C1120.75 (19)C11—C10—C9117.48 (18)
C3—C2—H2A119.6C11—C10—H10A121.3
C1—C2—H2A119.6C9—C10—H10A121.3
C2—C3—C4119.73 (18)C10—C11—C12122.76 (17)
C2—C3—H3A120.1C10—C11—Cl1118.90 (15)
C4—C3—H3A120.1C12—C11—Cl1118.33 (14)
C5—C4—C3120.16 (19)C13—C12—C11120.25 (17)
C5—C4—H4A119.9C13—C12—H12A119.9
C3—C4—H4A119.9C11—C12—H12A119.9
C4—C5—C6120.47 (18)C12—C13—C14118.07 (18)
C4—C5—H5A119.8C12—C13—H13A121.0
C6—C5—H5A119.8C14—C13—H13A121.0
C1—C6—C5118.72 (17)C13—C14—C9121.40 (17)
C1—C6—C7121.69 (17)C13—C14—S1129.28 (15)
C5—C6—C7119.52 (15)C9—C14—S1109.32 (12)
N1—C7—C6123.50 (16)
C6—C1—C2—C30.1 (3)C7—N1—C9—C14−0.3 (2)
C1—C2—C3—C40.0 (3)N1—C9—C10—C11−178.70 (17)
C2—C3—C4—C50.1 (3)C14—C9—C10—C110.1 (3)
C3—C4—C5—C6−0.2 (3)C9—C10—C11—C12−0.4 (3)
C2—C1—C6—C5−0.1 (3)C9—C10—C11—Cl1178.89 (14)
C2—C1—C6—C7−177.15 (17)C10—C11—C12—C130.5 (3)
C4—C5—C6—C10.2 (3)Cl1—C11—C12—C13−178.86 (15)
C4—C5—C6—C7177.29 (16)C11—C12—C13—C14−0.2 (3)
C9—N1—C7—C6−175.21 (15)C12—C13—C14—C9−0.2 (3)
C9—N1—C7—S11.28 (19)C12—C13—C14—S1179.72 (15)
C1—C6—C7—N1177.03 (17)N1—C9—C14—C13179.11 (17)
C5—C6—C7—N10.0 (3)C10—C9—C14—C130.2 (3)
C1—C6—C7—S10.7 (2)N1—C9—C14—S1−0.8 (2)
C5—C6—C7—S1−176.27 (14)C10—C9—C14—S1−179.71 (14)
C14—S1—C7—N1−1.50 (15)C7—S1—C14—C13−178.71 (18)
C14—S1—C7—C6175.10 (14)C7—S1—C14—C91.20 (14)
C7—N1—C9—C10178.56 (17)
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2488).
  • Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.
  • Hout, S., Azas, N., Darque, A., Robin, M., Di Giorgio, C., Gasquet, M., Galy, J. & David, P. (2004). Parasitology, 129, 525–542. [PubMed]
  • Kok, S. H. L., et al. (2008). Bioorg. Med. Chem. 16, 3626–3631. [PubMed]
  • Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259. [PMC free article] [PubMed]
  • Maharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules, 12, 622–633. [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  • Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404–2408.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150–157.
  • Venkatesh, P. & Pandeya, S. N. (2009). Int. J. ChemTech. Res. 1, 1354–1358.
  • Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography