PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Sep 1, 2012; 68(Pt 9): o2652.
Published online Aug 8, 2012. doi:  10.1107/S1600536812034034
PMCID: PMC3435679
4-Nitro-1-[(trimethyl­sil­yl)ethyn­yl]benzene: low-temperature polymorph at 100 K1
Jasmine N. Millican,a Frank R. Fronczek,a* and Steve F. Watkinsa
aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: ffroncz/at/lsu.edu
Received July 27, 2012; Accepted July 30, 2012.
The title compound, C11H13NO2Si, is a low-temperature form of the previously reported room-temperature structure [Garcia et al. (1998 [triangle]). Acta Cryst. C54, 489–491]. At 298 K, the material crystallizes in the space group Pnma and occupies a crystallographic mirror plane, but at 100 K the space group changes to P212121, the volume decreases by 5% and the mol­ecule distorts. The greatest mol­ecular distortions from C s symmetry are rotations of the trimethyl­silyl and nitro groups by 10.56 (8) and 11.47 (9)°, respectively, to the benzene mean plane. At low temperature, the crystal also becomes an inversion twin, the refined ratio of the twin components being 0.35 (15):0.65 (15).
Related literature  
For the synthesis of the title compound, see: Takahashi et al. (1980 [triangle]). For the crystal structure of the room temperature form of the title compound, see: Garcia et al. (1998 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For Hooft analysis of Bijvoet pairs, see: Hooft et al. (2008 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-o2652-scheme1.jpg Object name is e-68-o2652-scheme1.jpg
Crystal data  
  • C11H13NO2Si
  • M r = 219.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-68-o2652-efi1.jpg
  • a = 10.222 (2) Å
  • b = 7.128 (2) Å
  • c = 16.537 (4) Å
  • V = 1204.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 100 K
  • 0.20 × 0.15 × 0.12 mm
Data collection  
  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.966, T max = 0.979
  • 17805 measured reflections
  • 4690 independent reflections
  • 3538 reflections with I > 2σ(I)
  • R int = 0.032
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.123
  • S = 1.02
  • 4690 reflections
  • 139 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1953 Bijvoet pairs
  • Flack parameter: 0.35 (15)
Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034034/su2491sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034034/su2491Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812034034/su2491Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
Purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.
supplementary crystallographic information
Comment
At 298 K title molecule has Cs symmetry (Garcia et al., 1998; CSD refcode NILWIO; Allen, 2002), with all but two methyl groups lying in the mirror plane. When the temperature is reduced to 100 K, the inversion center vanishes and the space group changes from Pnma to P212121, the unit cell volume is reduced from 1261.8 (3) to 1204.9 (5) Å3, and the molecular symmetry is reduced to C1. The mean plane of the six benzene C atoms, (mean deviation δr.m.s. = 0.004 Å), is normal to the b axis at 298 K but inclines +4.51 (8)° from normal at 100 K, while the C1—Si1—C9 plane is rotated off-normal by -6.05 (8)° and the NO2 group is rotated off-normal by +15.78 (9)°.
Other geometrical parameters in the two polymorphs are similar, for example [those at 298 K are in parentheses] : C1[equivalent]C2 = 1.209 (2) [1.199 (4)] Å, Si1—C1 = 1.845 (2) [1.839 (3)] Å, Si1—C9 = 1.856 (2) [1.831 (4)] Å, Si1—C10 = 1.853 (2) [1.838 (3)] Å, Si1—C10B = 1.856 (2)[1.838 (3)] Å, N1—O1 = 1.219 (2) [1.201 (4)] Å, N1—O2 = 1.221 (2) [1.175 (4)] Å, Si1—C1[equivalent]C2 = 176.1 (2) [177.9 (3)]°, C1[equivalent]C2—C3 = 175.9 (2) [178.0 (3)]°, O1—N1—O2 = 123.5 (2) [122.9 (3)]°.
Experimental
The compound was prepared by palladium(II) coupling of trimethylsilylacetylene with 4-nitroiodobenzene as described by (Takahashi et al., 1980).
Refinement
Analysis of 1953 Bijvoet pairs yields a Hooft (Hooft et al., 2008) parameter y = 0.42 (6) and P3(rac-twin) = 1.000. The model was therefore refined as an inversion twin (SHELXL commands TWIN and BASF) giving the refined ratio 0.35 (15):0.65 (15) for the twin components. The C-bound H atoms were placed in calculated positions, guided by difference maps, and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH(aromatic) and CH3 H atoms, respectively, with Uiso = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms. A torsional parameter was refined for each methyl group.
Figures
Fig. 1.
Fig. 1.
View of the molecular structure of the title compound, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
Crystal data
C11H13NO2SiF(000) = 464
Mr = 219.31Dx = 1.209 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2709 reflections
a = 10.222 (2) Åθ = 2.5–34.3°
b = 7.128 (2) ŵ = 0.18 mm1
c = 16.537 (4) ÅT = 100 K
V = 1204.9 (5) Å3Needle fragment, yellow
Z = 40.20 × 0.15 × 0.12 mm
Data collection
Nonius KappaCCD diffractometer4690 independent reflections
Radiation source: sealed tube3538 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 33.8°, θmin = 3.1°
ω and [var phi] scansh = −15→15
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)k = −11→11
Tmin = 0.966, Tmax = 0.979l = −25→25
17805 measured reflections
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.123w = 1/[σ2(Fo2) + (0.046P)2 + 0.4973P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4690 reflectionsΔρmax = 0.36 e Å3
139 parametersΔρmin = −0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 1953 Bijvoet pairs
0 constraintsFlack parameter: 0.35 (15)
Primary atom site location: structure-invariant direct methods
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
C10.67962 (16)0.2773 (3)0.66604 (9)0.0270 (3)
C20.77829 (16)0.2789 (3)0.70632 (9)0.0252 (3)
C30.89002 (14)0.2769 (3)0.75911 (9)0.0218 (3)
C41.01780 (16)0.2851 (3)0.72849 (9)0.0262 (3)
H41.03160.29560.67190.031*
C51.12430 (15)0.2779 (3)0.78050 (10)0.0265 (3)
H51.21110.28420.76020.032*
C61.10107 (14)0.2614 (3)0.86239 (9)0.0234 (3)
C70.97590 (14)0.2541 (3)0.89480 (9)0.0242 (3)
H70.96290.24330.95150.029*
C80.87080 (14)0.2629 (3)0.84253 (9)0.0225 (3)
H80.78430.25940.86350.027*
C90.5612 (2)0.2384 (5)0.50094 (10)0.0415 (5)
H9A0.61120.12260.49260.062*
H9B0.61290.34590.48250.062*
H9C0.47940.23220.47020.062*
C100.4263 (2)0.0658 (3)0.64911 (14)0.0376 (5)
H10A0.40970.08360.7070.056*
H10B0.475−0.05120.64090.056*
H10C0.34290.05930.62010.056*
C10B0.4280 (2)0.4829 (3)0.62787 (15)0.0394 (5)
H10D0.4770.59120.60750.059*
H10E0.41240.49820.6860.059*
H10F0.34390.47420.59960.059*
N11.21298 (13)0.2499 (3)0.91772 (9)0.0345 (3)
O11.32160 (13)0.2830 (3)0.89090 (11)0.0531 (4)
O21.19270 (16)0.2043 (4)0.98780 (9)0.0670 (7)
Si10.52365 (4)0.26554 (7)0.61012 (3)0.02349 (11)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
C10.0248 (7)0.0341 (10)0.0221 (7)0.0007 (8)−0.0007 (6)−0.0014 (7)
C20.0248 (7)0.0291 (9)0.0219 (6)0.0008 (7)−0.0009 (5)−0.0006 (7)
C30.0208 (6)0.0240 (8)0.0207 (6)0.0008 (7)−0.0020 (5)0.0005 (6)
C40.0247 (7)0.0345 (9)0.0194 (6)0.0007 (8)0.0022 (6)0.0026 (6)
C50.0189 (6)0.0334 (10)0.0270 (7)−0.0001 (7)0.0027 (5)0.0008 (8)
C60.0183 (6)0.0274 (9)0.0245 (6)0.0001 (8)−0.0048 (5)−0.0022 (8)
C70.0223 (6)0.0311 (8)0.0192 (5)0.0013 (8)−0.0001 (5)−0.0013 (7)
C80.0177 (6)0.0285 (9)0.0212 (6)−0.0005 (7)0.0001 (5)−0.0016 (7)
C90.0392 (9)0.0626 (15)0.0228 (7)−0.0031 (12)−0.0018 (7)−0.0023 (10)
C100.0296 (10)0.0364 (12)0.0467 (12)0.0002 (8)0.0011 (9)0.0090 (9)
C10B0.0310 (10)0.0343 (11)0.0530 (13)0.0074 (8)−0.0112 (10)−0.0091 (9)
N10.0235 (6)0.0442 (10)0.0357 (7)0.0034 (8)−0.0094 (6)−0.0075 (9)
O10.0217 (6)0.0733 (12)0.0641 (10)−0.0078 (7)−0.0111 (7)0.0065 (11)
O20.0388 (8)0.136 (2)0.0264 (7)0.0166 (12)−0.0122 (6)−0.0023 (10)
Si10.02129 (18)0.0293 (2)0.01984 (18)0.00030 (19)−0.00383 (15)−0.00043 (19)
Geometric parameters (Å, º)
C1—C21.209 (2)C9—Si11.8560 (18)
C1—Si11.8450 (17)C9—H9A0.98
C2—C31.438 (2)C9—H9B0.98
C3—C81.397 (2)C9—H9C0.98
C3—C41.402 (2)C10—Si11.853 (2)
C4—C51.388 (2)C10—H10A0.98
C4—H40.95C10—H10B0.98
C5—C61.380 (2)C10—H10C0.98
C5—H50.95C10B—Si11.856 (2)
C6—C71.388 (2)C10B—H10D0.98
C6—N11.4671 (19)C10B—H10E0.98
C7—C81.380 (2)C10B—H10F0.98
C7—H70.95N1—O11.219 (2)
C8—H80.95N1—O21.221 (2)
C2—C1—Si1176.09 (16)H9A—C9—H9C109.5
C1—C2—C3175.90 (18)H9B—C9—H9C109.5
C8—C3—C4119.38 (13)Si1—C10—H10A109.5
C8—C3—C2119.25 (14)Si1—C10—H10B109.5
C4—C3—C2121.36 (14)H10A—C10—H10B109.5
C5—C4—C3120.35 (14)Si1—C10—H10C109.5
C5—C4—H4119.8H10A—C10—H10C109.5
C3—C4—H4119.8H10B—C10—H10C109.5
C6—C5—C4118.44 (14)Si1—C10B—H10D109.5
C6—C5—H5120.8Si1—C10B—H10E109.5
C4—C5—H5120.8H10D—C10B—H10E109.5
C5—C6—C7122.73 (14)Si1—C10B—H10F109.5
C5—C6—N1118.86 (13)H10D—C10B—H10F109.5
C7—C6—N1118.42 (14)H10E—C10B—H10F109.5
C8—C7—C6118.29 (13)O1—N1—O2123.47 (16)
C8—C7—H7120.9O1—N1—C6118.21 (16)
C6—C7—H7120.9O2—N1—C6118.31 (15)
C7—C8—C3120.81 (13)C1—Si1—C10108.92 (10)
C7—C8—H8119.6C1—Si1—C10B109.77 (10)
C3—C8—H8119.6C10—Si1—C10B107.68 (10)
Si1—C9—H9A109.5C1—Si1—C9108.27 (8)
Si1—C9—H9B109.5C10—Si1—C9111.68 (12)
H9A—C9—H9B109.5C10B—Si1—C9110.51 (12)
Si1—C9—H9C109.5
C8—C3—C4—C50.5 (3)C6—C7—C8—C30.6 (3)
C2—C3—C4—C5−178.28 (19)C4—C3—C8—C7−1.0 (3)
C3—C4—C5—C60.4 (3)C2—C3—C8—C7177.76 (18)
C4—C5—C6—C7−0.9 (3)C5—C6—N1—O110.6 (3)
C4—C5—C6—N1178.80 (18)C7—C6—N1—O1−169.7 (2)
C5—C6—C7—C80.3 (3)C5—C6—N1—O2−168.0 (2)
N1—C6—C7—C8−179.33 (18)C7—C6—N1—O211.7 (3)
Footnotes
1CAS 75867-38-8.
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2491).
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Garcia, J. G., Asfaw, B., Rodriguez, A. & Fronczek, F. R. (1998). Acta Cryst. C54, 489–491. [PubMed]
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [PMC free article] [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 8, 627–630.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography