Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1979 December 11; 7(7): 1913–1929.
PMCID: PMC342356

Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits.


Highly conserved sequences present at an identical position near the 3' ends of eukaryotic and prokaryotic 5S rRNAs are complementary to the 5' strand of the m2(6)A hairpin structure near the 3' ends of 18S rRNA and 16S rRNA, respectively. The extent of base-pairing and the calculated stabilities of the hybrids that can be constructed between 5S rRNAs and the small ribosomal subunit RNAs are greater than most, if not all, RNA-RNA interactions that have been implicated in protein synthesis. The existence of complementary sequences in 5S rRNA and small ribosomal subunit RNA, along with the previous observation that there is very efficient and selective hybridization in vitro between 5S and 18S rRNA, suggests that base-pairing between 5S rRNA in the large ribosomal subunit and 18S (16S) rRNA in the small ribosomal subunit might be involved in the reversible association of ribosomal subunits. Structural and functional evidence supporting this hypothesis is discussed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. [PubMed]
  • Steitz JA, Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. [PubMed]
  • van Knippenberg PH. A possible role of the 5' terminal sequence of 16S ribosomal RNA in the recognition of initiation sequences for protein synthesis. Nucleic Acids Res. 1975 Jan;2(1):79–85. [PMC free article] [PubMed]
  • Hagenbüchle O, Santer M, Steitz JA, Mans RJ. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells. Cell. 1978 Mar;13(3):551–563. [PubMed]
  • Dalgarno L, Shine J. Conserved terminal sequence in 18SrRNA may represent terminator anticodons. Nat New Biol. 1973 Oct 31;245(148):261–262. [PubMed]
  • Erdmann VA, Sprinzl M, Pongs O. The involvement of 5S RNA in the binding of tRNA to ribosomes. Biochem Biophys Res Commun. 1973 Oct 1;54(3):942–948. [PubMed]
  • Dube SK. Recognition of tRNA by the ribosome. A possible role of 5 S RNA. FEBS Lett. 1973 Oct 1;36(1):39–42. [PubMed]
  • Azad AA, Lane BG. A possible role for 5 S rRNA as a bridge between ribosomal subunits. Can J Biochem. 1973 Dec;51(12):1669–1672. [PubMed]
  • Azad AA, Lane BG. Wheat-embryo ribonucleates. IV. Factors that influence the formation and stability of a complex between 5S rRNA and 18S rRNA. Can J Biochem. 1975 Mar;53(3):320–327. [PubMed]
  • Oakden KM, Azad AA, Lane BG. Wheat embryo ribonucleates. VII. Rapid, efficient and selective formation of 5S-18S and 5.8S-26S hybrids in an aqueous solution of the four ribosomal polynucleotides, and the results of a search for the corresponding hybrids in wheat embryo ribosomes. Can J Biochem. 1977 Jan;55(1):99–109. [PubMed]
  • Azad AA. Hybridization between 5S rRNA and 18S rRNA from barley embryos and mouse sarcoma 180 ascites cells. Biochem Biophys Res Commun. 1978 Jul 14;83(1):259–265. [PubMed]
  • Nichols JL, Wijesinghe W. Identification of the 5S RNA binding site in intermolecular complexes of wheat embryo ribosomal 5S and 18S RNA. Can J Biochem. 1978 Jul;56(7):760–764. [PubMed]
  • De Jonge P, Klootwijk J, Planta RJ. Sequence of the 3'-terminal 21 nucleotides of yeast 17S ribosomal RNA. Nucleic Acids Res. 1977 Oct;4(10):3655–3663. [PMC free article] [PubMed]
  • Alberty H, Raba M, Gross HJ. Isolation from rat liver and sequence of a RNA fragment containing 32 nucleotides from position 5 to 36 from the 3' end of ribosomal 18S RNA. Nucleic Acids Res. 1978 Feb;5(2):425–434. [PMC free article] [PubMed]
  • Ehresmann C, Stiegler P, Mackie GA, Zimmermann RA, Ebel JP, Fellner P. Primary sequence of the 16S ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1975 Feb;2(2):265–278. [PMC free article] [PubMed]
  • Erdmann VA. Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 1978 Jan;5(1):r1–r13. [PMC free article] [PubMed]
  • Van Duin J, Kurland CG, Dondon J, Grunberg-Mangago M, Branlant C, Ebel JP. New aspects of the IF3-ribosome interaction. FEBS Lett. 1976 Feb 15;62(2):111–114. [PubMed]
  • Carbon P, Ehresmann C, Ehresmann B, Ebel JP. The sequence of Escherichia coli ribosomal 16 S RNA determined by new rapid gel methods. FEBS Lett. 1978 Oct 1;94(1):152–156. [PubMed]
  • Woese CR, Fox GE, Zablen L, Uchida T, Bonen L, Pechman K, Lewis BJ, Stahl D. Conservation of primary structure in 16S ribosomal RNA. Nature. 1975 Mar 6;254(5495):83–86. [PubMed]
  • Baan RA, Hilbers CW, Van Charldorp R, Van Leerdam E, Van Knippenberg PH, Bosch L. High-resolution proton magnetic resonance study of the secondary structure of the 3'-terminal 49-nucleotide fragment of 16S rRNA from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1028–1031. [PubMed]
  • Bowman CM, Sidikaro J, Nomura M. Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nat New Biol. 1971 Dec 1;234(48):133–137. [PubMed]
  • Senior BW, Holland IB. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971 May;68(5):959–963. [PubMed]
  • Turnowsky F, Drews J, Eich F, Högenauer G. In vitro inactivation of ascites ribosomes by colicin E 3. Biochem Biophys Res Commun. 1973 May 1;52(1):327–334. [PubMed]
  • Suzuki H. Colicin E3 inhibits rabbit globin synthesis. FEBS Lett. 1978 May 1;89(1):121–125. [PubMed]
  • Chapman NM, Noller HF. Protection of specific sites in 16 S RNA from chemical modification by association of 30 S and 50 S ribosomes. J Mol Biol. 1977 Jan 5;109(1):131–149. [PubMed]
  • Santer M, Shane S. Area of 16S ribonucleic acid at or near the interface between 30S and 50S ribosomes of Escherichia coli. J Bacteriol. 1977 May;130(2):900–910. [PMC free article] [PubMed]
  • Schreiber JP, Hsiung N, Cantor CR. Fluorescence studies of the accessibility of the 3' ends of the ribosomal RNAs in Escherichia coli ribosomes and subunits. Nucleic Acids Res. 1979 Jan;6(1):181–193. [PMC free article] [PubMed]
  • Politz SM, Glitz DG. Ribosome structure: localization of N6,N6-dimethyladenosine by electron microscopy of a ribosome-antibody complex. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1468–1472. [PubMed]
  • Czernilofsky AP, Kurland CG, Stöffler G. 30S ribosomal proteins associated with the 3'-terminus of 16S RNA. FEBS Lett. 1975 Oct 15;58(1):281–284. [PubMed]
  • Zimmermann RA, Mackie GA, Muto A, Garrett RA, Ungewickell E, Ehresmann C, Stiegler P, Ebel JP, Fellner P. Location and characteristics of ribosomal protein binding sites in the 16S RNA of Escherichia coli. Nucleic Acids Res. 1975 Feb;2(2):279–302. [PMC free article] [PubMed]
  • Lutter LC, Zeichhardt H, Kurland CG. Ribosomal protein neighborhoods. I. S18 and S21 as well as S5 and S8 are neighbors. Mol Gen Genet. 1972;119(4):357–366. [PubMed]
  • Kolb A, Hermoso JM, Thomas JO, Szer W. Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2379–2383. [PubMed]
  • Dahlberg AE, Dahlberg JE. Binding of ribosomal protein S1 of Escherichia coli to the 3' end of 16S rRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2940–2944. [PubMed]
  • Hochkeppel HK, Craven GR. Significant changes in 16 S RNA conformation accompanying assembly of the 30 S ribosome in vitro. J Mol Biol. 1977 Jul 15;113(4):623–634. [PubMed]
  • Subramanian AR, Davis BD. Activity of initiation factor F3 in dissociating Escherichia coli ribosomes. Nature. 1970 Dec 26;228(5278):1273–1275. [PubMed]
  • van Duin J, Kurland CG, Dondon J, Grunberg-Manago M. Near neighbors of IF3 bound to 30S ribosomal subunits. FEBS Lett. 1975 Nov 15;59(2):287–290. [PubMed]
  • Thammana P, Cantor CR. Studies on ribosome structure and interactions near the m62Am62A sequence. Nucleic Acids Res. 1978 Mar;5(3):805–823. [PMC free article] [PubMed]
  • Kuebbing D, Liarakos CD. Nucleotide sequence at the 5' end of ovalbumin messenger RNA from chicken. Nucleic Acids Res. 1978 Jul;5(7):2253–2266. [PMC free article] [PubMed]
  • Azad AA, Deacon NJ. Base-paired interaction, in vitro, between hen globin 9S mRNA and eukaryotic ribosomal RNAs. Biochem Biophys Res Commun. 1979 Feb 14;86(3):568–576. [PubMed]
  • Richards EG. 5S RNA. An analysis of possible base pairing schemes. Eur J Biochem. 1969 Aug;10(1):36–42. [PubMed]
  • Fox GE, Woese CR. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. [PubMed]
  • Vigne R, Jordan BR. Partial enzyme digestion studies on Escherichia coli, Pseudomonas, Chlorella, Drosophila, HeLa and yeast 5S RNAs support a general class of 5S RNA models. J Mol Evol. 1977 Sep 20;10(1):77–86. [PubMed]
  • Noller HF, Herr W. Letters to the editor: Accessibility of 5 S RNA in 50 S ribosomal subunits. J Mol Biol. 1974 Nov 25;90(1):181–184. [PubMed]
  • Delihas N, Dunn JJ, Erdmann VA. The reaction of 5S RNA in 70S ribosomes with kethoxal. FEBS Lett. 1975 Oct 15;58(1):76–80. [PubMed]
  • Herr W, Noller HF. Protection of specific sites in 23 S and 5 S RNA from chemical modification by association of 30 S and 50 S ribosomes. J Mol Biol. 1979 Jun 5;130(4):421–432. [PubMed]
  • Bellemare G, Jordan BR, Rocca-Serra J, Monier R. Accessibility of Escherichia coli 5S RNA base residues to chemical reagents. Influence of chemical alterations on the affinity of 5S RNA for the 50S subunit structure. Biochimie. 1972;54(11):1453–1466. [PubMed]
  • Weidner H, Yuan R, Crothers DM. Does 5S RNA function by a switch between two secondary structures? Nature. 1977 Mar 10;266(5598):193–194. [PubMed]
  • Jordan BR. Studies on 5 s RNA conformation by partial ribonuclease hydrolysis. J Mol Biol. 1971 Feb 14;55(3):423–439. [PubMed]
  • Fox JW, Wong KP. Changes in the conformation and stability of 5 S RNA upon the binding of ribosomal proteins. J Biol Chem. 1978 Jan 10;253(1):18–20. [PubMed]
  • Payne PI, Dyer TA. Evidence for the nucleotide sequence of 5-S rRNA from the flowering plant Secale cereale (Rye). Eur J Biochem. 1976 Dec;71(1):33–38. [PubMed]
  • Helser TL, Davies JE, Dahlberg JE. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat New Biol. 1971 Sep 1;233(35):12–14. [PubMed]
  • Tai PC, Wallace BJ, Davis BD. Actions of aurintricarboxylate, kasugamycin, and pactamycin on Escherichia coli polysomes. Biochemistry. 1973 Feb;12(4):616–620. [PubMed]
  • Helser TL, Davies JE, Dahlberg JE. Mechanism of kasugamycin resistance in Escherichia coli. Nat New Biol. 1972 Jan 5;235(53):6–9. [PubMed]
  • Herr W, Chapman NM, Noller HF. Mechanism of ribosomal subunit association: discrimination of specific sites in 16 S RNA essential for association activity. J Mol Biol. 1979 Jun 5;130(4):433–449. [PubMed]
  • Baan RA, Naaktgeboren N, van Charldorp R, van Knippenberg PH, Bosch L. Consequences of a specific cleavage in situ of 16-S ribosomal RNA for polypeptide chain initiation. Eur J Biochem. 1978 Jun 1;87(1):131–136. [PubMed]
  • Erdmann VA, Fahnestock S, Higo K, Nomura M. Role of 5S RNA in the functions of 50S ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2932–2936. [PubMed]
  • Yu RS, Wittmann HG. The structural basis for functional inactivity of reconstituted 50-S ribosomal subunits of Escherichia coli. Biochim Biophys Acta. 1973 Sep 7;319(3):388–400. [PubMed]
  • Avadhani NG, Buetow DE. A proposed role for 5S ribosomal RNA. Biochem Biophys Res Commun. 1973 Jan 23;50(2):443–451. [PubMed]
  • Wreschner DH. The role of ribosomal RNA in protein synthesis. Inhibition of translation by reticulocyte 5 S ribosomal RNA. FEBS Lett. 1978 Oct 1;94(1):139–144. [PubMed]
  • Wreschner DH. Reticulocyte 5 S ribosomal RNA inhibition of cell-free protein synthesis. Novel responses in ribosomal behaviour. FEBS Lett. 1978 Oct 1;94(1):145–151. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press