Search tips
Search criteria 


Logo of advvirolJournal's HomeManuscript SubmissionAims and ScopeAuthor GuidelinesEditorial BoardHome
Adv Virol. 2012; 2012: 767694.
Published online Jul 25, 2012. doi:  10.1155/2012/767694
PMCID: PMC3410301
Extracellular Vesicles and Their Convergence with Viral Pathways
Thomas Wurdinger, 1 , 2 * NaTosha N. Gatson, 3 Leonora Balaj, 1 Balveen Kaur, 3 Xandra O. Breakefield, 1 and D. Michiel Pegtel 4
1Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
2Neuro-oncology Research Group, Department of Neurosurgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
3Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University, Columbus, OH 43210, USA
4Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
*Thomas Wurdinger: t.wurdinger/at/
Academic Editor: Julia G. Prado
Received February 21, 2012; Accepted June 6, 2012.
Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.
Articles from Advances in Virology are provided here courtesy of
Hindawi Publishing Corporation