Search tips
Search criteria 


Logo of transbThe Royal Society PublishingPhilosophical Transactions BAboutBrowse By SubjectAlertsFree Trial
Philos Trans R Soc Lond B Biol Sci. 2012 September 5; 367(1601): 2402–2415.
PMCID: PMC3405675

Transcriptional regulation of the 5-HT1A receptor: implications for mental illness


The serotonin-1A (5-HT1A) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT1A receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT1A receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT1A receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT1A autoreceptor expression in animal models and humans. Its association with altered 5-HT1A expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT1A heteroreceptors, and rs6295-induced upregulation of 5-HT1A autoreceptors. Targeted therapeutics to inhibit 5-HT1A autoreceptor expression and induce 5-HT1A heteroreceptor expression may ameliorate treatment of anxiety and major depression.

Keywords: serotonin, transcription, receptor, raphe, anxiety, depression

1. Introduction

The 5-HT1A receptor has been increasingly associated with alterations in mood and emotion and has opposing functions as a pre-synaptic somatodendritic autoreceptor and a post-synaptic heteroreceptor. The 5-HT1A autoreceptor mediates negative feedback inhibition on 5-HT neurons, while the 5-HT1A heteroreceptors mediate 5-HT actions on target neurons. We focus on the transcriptional mechanisms and polymorphic changes that regulate pre- versus post-synaptic 5-HT1A receptors, and how this differential regulation could be used to understand the etiology and improve the treatment of mental illnesses.

2. 5-HT1A autoreceptors as brakes for 5-HT neurotransmission

The concept of the ‘autoreceptor’ as a receptor that regulates (usually inhibits) the release of its own neurotransmitter goes back to the 1960s, originally described by Carlsson and colleagues [1,2] for the dopamine system. The key observations that these receptors regulate release of their own neurotransmitters came from evidence that by inhibiting autoreceptors using pharmacological blockers such as haloperidol or chlorpromazine, dopamine release and turnover was greatly augmented. Oppositely, agonists such as apomorphine suppressed basal dopamine release. These key observations were replicated in the noradrenergic and serotonergic systems, and now the concept of autoreceptors has been generalized to include a number of other systems, including histaminergic, glutaminergic, cholinergic and other major neurotransmitter systems [3].

For the serotonin (5-hydroxytryptamine, 5-HT) system, the presence of autoreceptors was indicated by evidence that non-selective agonist LSD or 5-HT itself reduced 5-HT release, while receptor antagonists like methiothepin increased 5-HT release [4]. Aghajanian's group showed that autoregulation of firing was mediated by 5-HT receptors on the 5-HT neurons [57]. Using the selective agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), Hamon's group identified the 5-HT1A receptor as the major autoreceptor on the cell body and dendrites of 5-HT neurons of the raphe nuclei [811]. The 5-HT1A autoreceptor was then shown to mediate 5-HT auto-inhibition [7,12]. A consistent observation has been that reduction or ablation of 5-HT1A autoreceptors leads to increased 5-HT neurotransmission [1317], while over-expression of 5-HT1A autoreceptors reduces 5-HT neurotransmission [1820]. While 5-HT1A antagonists do not greatly affect basal firing, they consistently reverse inhibition of firing by 5-HT1A agonist or specific reuptake inhibitor (SSRI) treatment, suggesting that the basal level of 5-HT under recording conditions may be insufficient to see effects. In 5-HT1A knockout animals, an elevated basal raphe firing may result from a chronic absence of 5-HT1A receptors. By contrast, the 5-HT1B subtype is the key autoreceptor on presynaptic 5-HT nerve terminals regulating 5-HT release [21,22]. Recently, targeting of the 5-HT1A autoreceptor to soma and dendrites has been shown to be mediated by interaction of the receptor C-terminal tail with Yif1B [23,24]. 5-HT1A-mediated autoinhibition involves 5-HT1A-induced hyperpolarization of raphe neurons that is mediated by coupling of pertussis toxin-sensitive Gi proteins to activation of inward-rectifying potassium (GIRK) channels [2528], possibly GIRK2 channels [29], which are co-expressed with 5-HT1A receptors in raphe and post-synaptic regions [30]. In addition, 5-HT1A heteroreceptors mediate an indirect negative feedback pathway by inhibition of pyramidal cortical neurons that project to raphe 5-HT neurons [31]. Oppositely, 5-HT2A and 5-HT4 receptors mediate positive feedback of 5-HT neurons via prefrontal cortex and hippocampus projections, respectively [31,32]. Together, the direct and indirect 5-HT1A-mediated feedback mechanisms negatively regulate the activity of the 5-HT system.

Release of 5-HT1A-mediated autoinhibition by receptor desensitization appears to play a key role in the efficacy of antidepressant treatments, especially 5-HT-SSRIs [13,3335]. Acute treatment with SSRI leads to a local increase in 5-HT levels in the raphe nuclei [36,37], activating 5-HT1A-mediated autoinhibition to inhibit firing of 5-HT neurons. With chronic SSRI treatment, 5-HT1A autoreceptors (but not heteroreceptors) desensitize, restoring raphe firing to enhance 5-HT release. By contrast, sensitization of 5-HT1A heteroreceptors is observed following chronic antidepressant treatment, although the mechanisms involved remain unclear [3843].

Activation of 5-HT1A heteroreceptors plays a prominent role in the antidepressant and neurogenic actions of SSRIs [4446]. Several possible mechanisms have been implicated in 5-HT1A autoreceptor desensitization [42] including uncoupling from G-proteins [41,4750], receptor internalization [51], G-protein inactivation [52] and reduction in 5-HT1A autoreceptors [38,53]. In addition, coupling to the GIRK is reduced upon chronic fluoxetine treatment [54], one mechanism that may disinhibit raphe firing and allow for enhanced 5-HT neurotransmission. However, these mechanisms of rapid desensitization do not account for the chronic treatment required for antidepressant effects, and are also rapidly reversible [51]. The above studies were done in normal animals, while in animal models of depression chronic antidepressant treatment leads to a downregulation of 5-HT1A autoreceptor RNA or binding sites in the raphe nuclei [5557] (figure 1). Similarly, in human depression in elderly subjects a reduction in 5-HT1A autoreceptors was correlated with an increased response to SSRI treatment [58], while another study found that in patients treated with SSRIs, increased 5-HT1A autoreceptor availability correlated with more severe depression [59]. Thus, while rapid desensitization of 5-HT1A autoreceptors occurs, transcriptional downregulation of 5-HT1A autoreceptors may play a role in the long-term adaptive changes in response to chronic antidepressant treatment in depressed subjects. Consistent with this, mice engineered to repress 5-HT1A autoreceptor expression in adults by only 30 per cent responded to chronic SSRI treatment within days, while wild-type mice failed to respond to a three-week treatment [19]. Since partial or complete repression of 5-HT1A autoreceptors enhances 5-HT neuronal activity and 5-HT release in target tissues [19,20,60], these studies clearly indicate the level of 5-HT1A autoreceptors serves as a gate for response to chronic SSRI treatment [61].

Figure 1.
Model for Htr1a dysregulation in human anxiety and depression. Shown is a model of differential Htr1a regulation in pre-synaptic raphe 5-HT neurons projecting to post-synaptic neurons in target tissues involved in mood and affect, such as prefrontal cortex, ...

Alterations in 5-HT1A receptor expression result in anxiety- and depression-like behaviours in animal models. Knockout of the 5-HT1A receptor gene leads to increased anxiety behaviour in at least three different mouse strains [6264]. Specific repression of 5-HT1A autoreceptors also increases anxiety, suggesting that their loss leads to increased activation of other post-synaptic 5-HT receptors [20]. Pharmacological blockade of 5-HT1A receptors in early post-natal development also elicits an anxiety phenotype [65], while early post-natal expression of forebrain 5-HT1A receptors rescues the anxiety phenotype of 5-HT1A-null mice [66]. Similarly, transient over-expression of 5-HT1A receptors reduces anxiety in mice [67]. Selective repression of 5-HT1A heteroreceptors leads to depression-like behaviour, consistent with a role for post-synaptic 5-HT1A receptors in depression [20]. In agreement with this, enhancement of 5-HT1A-Gi2 signalling reduced depression-like behaviours, presumably via 5-HT1A heteroreceptor signalling [46]. Furthermore, 5-HT1A heteroreceptors appear to be obligatory for response to chronic SSRI treatment since 5-HT1A knockout mice lack behavioural and neurogenic response to SSRI [68]. Thus, 5-HT1A heteroreceptors appear critical for both the development of the depression phenotype as well as the antidepressant response to chronic SSRI treatment. Conversely, the 5-HT1A autoreceptor negatively regulates the activity of 5-HT neurons, and restrains the development of the anxiety phenotype as well as reducing and delaying response to SSRI treatment in mouse models (figure 1).

3. Transcriptional regulation of 5-HT1A autoreceptors versus heteroreceptors

The earlier-mentioned results indicate the importance of the 5-HT1A autoreceptor as a brake for 5-HT neurotransmission in vivo, suggesting that regulators of the Htr1a gene might affect basal 5-HT neurotransmission and susceptibility to depression or anxiety disorders (figure 1). The Htr1a gene lacks introns in its coding region and is strongly expressed in specific brain regions, but almost not at all in non-neuronal tissues [69,70]. The Htr1a gene contains a GC-rich proximal promoter region containing DNA elements for several ubiquitous transcription factors, including Myc-associated zinc finger protein (MAZ), Sp1 and NFκB that drive its expression in all cell types examined [7173]. By contrast, the Htr1a promoter also contains several Pet-1 sites recognized by the raphe-specific enhancer, Pet-1, which primarily enhances 5-HT1A autoreceptor expression [74]. Knockout of Pet-1 leads to reduced expression of 5-HT1A autoreceptors, as well as a general reduction in serotonergic differentiation markers [74,75]. Thus, Pet-1 is a key positive regulator of 5-HT1A autoreceptor expression.

To restrict Htr1a expression to neuronal cells, a series of repressor elements located upstream of the promoter coordinately silence the gene [73]. These include the RE-1 site for neural restrictive factor (REST/NRSF) [76] and a powerful dual repressor element that is regulated by a pair of conserved repressors, Freud-1/CC2D1A and Freud-2/CC2D1B [7779]. Unlike REST, which silences neuronal genes mainly in non-neuronal cells, Freud-1 and Freud-2 also repress 5-HT1A expression in neuronal cells [76]. Reduction of Freud-1 or Freud-2 expression using antisense or siRNA increases expression of neuronal 5-HT1A receptors [7881]. Together, these repressors silence the Htr1a gene in non-neuronal cells, but reversibly regulate its expression in 5-HT1A-positive neuronal cells. In raphe cells, Freud-1 is co-expressed with 5-HT1A autoreceptors and represses the Htr1a gene, while in target regions both Freud-1 and Freud-2 are expressed, and they both repress Htr1a expression in non-serotonergic neuronal cells. Thus, Freud-1 is implicated in 5-HT1A autoreceptor expression, while both Freud-1 and Freud-2 regulate 5-HT1A heteroreceptor expression.

Another region implicated in 5-HT1A autoreceptor regulation is the C(-1019)G (rs6295) Htr1a promoter polymorphism located within a palindrome (inverted repeat) sequence that is recognized by transcription factors NUDR/Deaf1 and Hes proteins Hes1 and Hes5 [82,83]. In raphe cells, Deaf1 and Hes repress Htr1a and the polymorphic change prevents their binding and repression, upregulating 5-HT1A autoreceptor expression. Hes1 and Hes5 are restricted to neuronal progenitors and silenced upon neuronal differentiation [84]. Knockout of Hes1 results in premature and expanded expression of midbrain 5-HT1A receptor RNA, suggesting a role for Hes1 to restrict 5-HT1A receptor expression to serotonergic neurons [83]. Recent results indicate that knockout of Deaf1 results in a 50 per cent increase in 5-HT1A autoreceptor expression in dorsal and medial raphe nuclei [85]. Thus, by disrupting repression both by Hes1/5 and by Deaf1, the G(-1019) allele is expected to increase 5-HT1A autoreceptor expression, reducing serotonergic activity and increasing the risk of depression (figure 1).

It is important to note that all of these transcriptional mechanisms interact to regulate 5-HT1A autoreceptor expression. For example, reduction in calcium levels by 5-HT1A autoreceptor signalling could relieve calcium-dependent inactivation of Freud-1 [78], leading to agonist-induced downregulation of Htr1a transcription. Oppositely, along with a trend for an increase in 5-HT1A RNA in raphe tissue from depressed versus control female subjects, REST and Deaf-1 RNA were also increased, suggesting a compensatory mechanism to normalize 5-HT1A autoreceptor expression [86]. Thus, transcriptional upregulation of the 5-HT1A autoreceptor in depression could be blunted by altered regulation of these key repressors in raphe cells.

Differential transcriptional regulation of 5-HT1A autoreceptors versus heteroreceptors is partly dictated by developmental and regional distribution of Htr1a transcriptional factors and alterations in regulators such as glucocorticoids. Thus, Pet-1 is raphe-specific, while Freud-2 is not detected in raphe cells and thus specifically regulates 5-HT1A heteroreceptors. Similarly, high- and low-affinity glucocorticoid receptors (mineralocorticoid receptor, MR, and glucocorticoid receptor, GR, respectively) are enriched in hippocampus compared with raphe and are critical for stress- or glucocorticoid-induced downregulation of hippocampal 5-HT1A receptors [40,71,8792]. Consistent with the importance of negative regulation of 5-HT1A heteroreceptors by glucocorticoids, an inverse correlation between glucocorticoid levels and hippocampal and amygdala but not raphe 5-HT1A receptor levels is seen in anxiety disorder patients [93]. With elevated glucocorticoid conditions, such as in chronic mild stress or sleep deprivation [94,95], GR appears to repress 5-HT1A autoreceptors [96]. Glucocorticoids can also uncouple 5-HT1A autoreceptors by reducing GIRK2 RNA levels [29]. Paradoxically, over-expression of MR or GR in the mouse forebrain increases 5-HT1A heteroreceptor expression (possibly via suppression of glucocorticoids), which was associated with an anti-anxiety/anti-depressed phenotype and increased SSRI responsiveness, respectively [97,98]. Thus, chronic life stress may dysregulate the 5-HT system by reducing 5-HT1A heteroreceptor expression and increase susceptibility to mental illness (figure 1).

4. Implications of 5-HT1A autoreceptor dysregulation for mental illness

Several lines of evidence suggest that depression and anxiety disorders in humans are associated with alterations in 5-HT1A receptor expression. An increase in 5-HT1A autoreceptor expression has been reported in the rostral raphe region of post-mortem tissue from a depressed suicide victim compared with control subjects, but with reduced 5-HT1A autoreceptor levels in caudal raphe regions [99,100]. Positron emission tomography (PET) imaging studies in living depression patients using the 5-HT1A antagonist [11C]WAY100635 also show a prominent 50 per cent increase in 5-HT1A autoreceptors in antidepressant-free or naive depressed subjects [101103], as well as a twofold increase in male bipolar depression patients [104]. An upregulation of 5-HT1A autoreceptors is likely to reduce serotonergic neurotransmission, as associated with human depression and suicide (figure 1).

With regard to 5-HT1A heteroreceptor expression, post-mortem studies have generally shown reduced 5-HT1A receptor expression in several regions of the frontal cortex of depressed suicide victims [105,106]. However, in depressed suicide tissue some cortical regions display any increase in 5-HT1A RNA, such as in the frontopolar cortex compared with a decrease in orbital frontal cortex suggesting that dysregulation of 5-HT1A heteroreceptors is region-specific [107,108]. Such region-specific changes in 5-HT1A receptor expression have not been observed in PET imaging studies, but rather global decreases or increases have been observed, which may reflect the limited special resolution of imaging studies [109]. In depression, decreases in 5-HT1A heteroreceptors are more pronounced than for autoreceptors [110113], which do not change or increase. In panic disorder, there is a reduction in cortical 5-HT1A heteroreceptors that is normalized by treatment [114,115]. Similarly, in social anxiety disorder, reductions in 5-HT1A binding in amygdala and anterior cingulate cortex were most prominent, with some decrease in raphe [116]. Reduced cortical 5-HT1A receptors were correlated with anxiety behaviour in normal subjects [117,118]. These results are consistent with animal studies that indicate a key role for 5-HT1A heteroreceptors in anxiety-like behaviours in mice [20].

Discrepancies in PET imaging results from different groups may be accounted for by methodological differences in reference tissue [101,119], or by confounds such as limited resolution (e.g. for raphe sub-regions), medication status or ligand competition with receptor-bound 5-HT in vivo. With regard to ligand competition, since PET ligand [11C]WAY100635 is a high-affinity 5-HT1A antagonist, it detects total 5-HT1A receptors, not distinguishing between coupled or uncoupled receptors and is not readily displaced by 5-HT. Treatment of rats with fenfluramine to release synaptic 5-HT reduced [11C]WAY100635 only in hippocampus [120] but reduced [18F]MPPF (a lower-affinity antagonist) binding in several brain areas [121]. The recent development of a labelled 5-HT1A agonist may provide a sensitive measure of increase in functional 5-HT1A autoreceptors in depression [122].

Taken together, results from human and animal studies are consistent with a model in which anxiety disorder involves a reduction in 5-HT1A heteroreceptors in limbic areas, such as hippocampus, amygdala and prefrontal cortex, with a lesser decrease in 5-HT1A autoreceptors (figure 1). A reduction or inactivation of 5-HT1A autoreceptors is correlated with increased amygdala activation typical of anxiety phenotypes and is thought to be due to increased 5-HT release [123]. On the other hand, depression appears to be driven by reduced 5-HT neurotransmission, in part due to an increase in pre-synaptic 5-HT1A autoreceptors which inhibits the release of 5-HT. As well, depression is associated with reduced levels of 5-HT1A heteroreceptors, particularly in the hippocampus and prefrontal cortex, that may be induced in part by chronic stress [124]. These results suggest that strategies that target preferentially post-synaptic 5-HT1A heteroreceptors may have greater effects in anxiety [125], while strategies that both augment 5-HT release and enhance post-synaptic 5-HT1A signalling would be more effective to treat depression. Consistent with this idea, chronic SSRI treatment of anxiety subjects selectively reduced post-synaptic 5-HT1A receptor levels in hippocampus and prefrontal cortex [126]. To date, 5-HT1A ligands, such as buspirone, have lacked selectivity, targeting both pre- and post-synaptic 5-HT1A receptors [127,128], and display limited efficacy for treatment of anxiety or depression. Because autoreceptors and heteroreceptors have opposing actions on serotonergic neurotransmission, these compounds are of limited benefit. Yet, in combination with SSRI, buspirone augments the antidepressant response due to preferential desensitization of 5-HT1A autoreceptors [129,130]. Recently, compounds with selectivity for post-synaptic receptors have been developed [131] that may demonstrate increased benefit for treatment of anxiety or depression.

It is important to emphasize that multiple mechanisms in addition to 5-HT1A autoreceptor levels regulate 5-HT neurotransmission and could contribute to depression and anxiety. For example, a reduction in TPH2 gene expression or activity [132], or reduced differentiation of 5-HT neurons as seen in Pet-1-deficient mice reduces 5-HT levels [74,75]. Hence, changes in 5-HT1A autoreceptor levels may be secondary to or enhanced by alterations in 5-HT levels. Furthermore, regional diversity of the raphe nuclei has been suggested, with a Pet-1-insensitive population of 5-HT neurons regulating anxiety behaviour [133]: differential regulation of 5-HT1A receptors within these populations may predispose to anxiety versus depression. Thus, certain populations of 5-HT neurons may display similar levels of 5-HT1A autoreceptors, while others may be affected by the rs6295 polymorphism, stress or other factors. The diversity of mechanisms regulating 5-HT neurotransmission is likely to underlie in part the heterogeneity of results in 5-HT1A receptor levels in depression. Nevertheless, therapeutic strategies that target 5-HT1A autoreceptors could be of benefit by resetting the level of 5-HT neurotransmission (figure 1).

5. Association of rs6295 with altered 5-HT1A receptor expression in humans

As described earlier, the G(-1019) allele of rs6295 would be expected to cause an upregulation of 5-HT1A autoreceptor expression by preventing Hes1 or Deaf1 repression, but may induce selective reductions in post-synaptic 5-HT1A receptors in specific brain regions due to blocking Deaf1 enhancer activity [134]. Recent PET imaging studies in human-depressed patients show an association of rs6295 with an increase in raphe 5-HT1A binding potential. A significant association was observed in unmedicated or antidepressant-naive depressed patients [102]. In this cohort, the rs6295 risk allele and genotype also associated with depression. In a replication study, the level of 5-HT1A receptor binding potential correlated with the genetic load, increasing from CC-CG-GG [101], which also correlated with reduced response to antidepressant treatment. In bipolar depression, the rs6295 genotype also tended to associate with increased raphe 5-HT1A binding [104]. A similar trend of increased 5-HT1A autoreceptor levels was seen using a different 5-HT1A ligand in two female depression patients with the GG genotype [135]. By contrast, in normal subjects, there was a trend for an association of increased 5-HT1A autoreceptor binding potential associated with the GG genotype, but this was not statistically significant [136]. The finding of a more robust increase in 5-HT1A autoreceptor levels with the GG genotype in depressed compared with normal subjects suggests that depressed subjects may not compensate efficiently for the dysregulation conferred by the G(-1019) allele.

Increase in 5-HT1A autoreceptors due to the rs6295 genotype may be augmented by a reduction in synaptic 5-HT release in depression and be reversed by SSRI antidepressants that increase synaptic 5-HT levels. Consistent with this, 5-HT1A autoreceptor levels negatively correlate with levels of the plasmalemmal 5-HT transporter (SERT) in PET studies [137,138], and in post-mortem studies [108,139]. Interestingly, increased 5-HT1A autoreceptor binding is associated with reduced response to antidepressants [102,140], which could reflect greater autoreceptor-mediated inhibition of 5-HT. Treatment of anxiety disorder patients with antidepressants appears to normalize the imbalance between increased 5-HT1A autoreceptor levels and decreased 5-HT1A heteroreceptors [141]. In addition, the level of 5-HT1A autoreceptors is altered by additional factors. For example, the level of 5-HT1A autoreceptor binding potential varies with the oestrous cycle in females [142], which may account for the increased predisposition of females to depression. Despite these variables and the small numbers of patients that can be studied by PET imaging, these data provide important evidence that the rs6295 polymorphism is functional in humans and leads to alterations in 5-HT1A receptor levels in depression.

6. Association studies of Htr1a polymorphisms in depression- and anxiety-related disorders

Since the initial report of an association of rs6295 with major depression and completed suicide [82], several studies have replicated these results [143]. A meta-analysis confirmed the association of the G-allele of rs6295 with depression, and found an especially strong association in Asian depression [144]. This could be due to the much lower frequency of the G-allele in Asian populations (10–20%) compared with 40–50% in Caucasian subjects. Thus, a twofold enrichment of the G-allele with depression may be observed in Asians, but a much smaller effect would be present in Caucasians. For example, in a study of a Caucasian Utah cohort with over 300 depressed and 300 control subjects, the G-allele was significantly enriched in depression by only 1.1-fold; the G/G genotype was 1.36-fold enriched [145]. Since these studies, several new association studies with the G-allele of rs6295 have been published for depression [101,146150], negative emotionality [151], anxiety [150,152], eating disorder [153], bipolar depression [104,147], alcohol withdrawal symptoms [154] and suicide [155]. One study suggests that the G-allele may be most strongly associated with depression with co-morbid anxiety [150], consistent with the importance of dysregulated Htr1a expression in both disorders. In support of this, the G-allele was associated with reduced amygdala activation in normal subjects [156]. Interestingly, in panic disorder and depressed patients the G-allele associated with increased amygdala activation but reduced right prefrontal cortex activation [157,158], suggesting altered fear circuitry [124]. In addition, recent findings have associated the G(-1019) allele with reductions in cognitive functioning in mismatch, attentional and error monitoring paradigms [159162]. Importantly, several studies of response to chronic SSRI treatment have found an association with reduced response of rs6295 alone or with other Htr1a polymorphisms [61,143,163167]. Interestingly, the G-allele is associated with a reduced effect on negative symptoms of atypical antipsychotics that have partial agonist activity at 5-HT1A receptors [168,169]. Thus, the G-allele appears to both confer risk for affective disorders and resistance to antidepressant and antipsychotic treatments that target the 5-HT system.

Not all studies have identified the association of rs6295 with depression or psychological symptoms [170172]. In these cases, the allele frequency was close to 50 per cent; hence, the expected effect size would be very small as argued already. In addition, stronger associations may be expected by use of ethnically homogenous populations [145], or examination of robust phenotypes, such as current depression or completed suicide rather than personality traits or suicidal thoughts, as done in the above-mentioned studies. A stronger association of rs6295 with current depression compared with depression traits is consistent with the idea that normal subjects may be able to compensate for 5-HT1A dysregulation in the presence of the G(-1019) allele, as suggested by PET imaging studies (see above). Most importantly, investigation of the association of rs6295 with a specific depression subtype (e.g. depression with co-morbid anxiety [150]) or specific endophenotypes (e.g. limbic activation, amygdala volume), appears to provide stronger associations in very small depression cohorts [124,157,173]. However, these studies need independent replication. The challenge remains to uncover reliable biomarkers and endophenotypes to distinguish different forms of depression and anxiety. By understanding the actions of specific functional polymorphisms, such as rs6295, it may be possible to sub-categorize different types of depression and rationally design optimal treatment strategies.

Based on studies of the 5-HT transporter long polymorphic repeat (5-HTTLPR), a well-studied promotor polymorphism [174], the role of early or late life stress in increasing vulnerability to depression or anxiety of the rs6295 polymorphism has also been examined. Unlike the 5-HTTLPR, early life stress did not appear to interact with the Htr1a genotype. The homozygous G(-1019) genotype was associated with panic disorder [152], but there was no interaction with early life stress. Similarly, no environment effect was seen in children with attention-deficit hyperactivity disorder (ADHD) for the association of the G-allele on emotional or anxiety behaviour [175]. Rather, recent stress may interact more strongly with rs6295 than early life stress in predisposing to depression [148]. Similarly, recent stress events, but not early life events, interacted with the Htr1a G-allele in susceptibility to complete suicide [155]. Similarly, bipolar depressed patients were more likely to be hospitalized after recent stress if they had the G/G Htr1a genotype [176]. In animal models, early life stress leads to region-specific alterations in 5-HT1A receptor levels [177,178] and appears to interact with late life stress to induce deficits in 5-HT1A receptor signalling [179]. Thus, stress-induced dysregulation of 5-HT1A receptor expression may be exacerbated by the presence of the G-allele, leading to increased predisposition to mental illness. Interestingly, the G-allele is associated with a blunted cortisol response to acute stress [180] and increased stress susceptibility [181], further suggesting a role for altered regulation of the 5-HT1A autoreceptor in impaired stress response in depressed patients [182]. In agreement with this, mice with an increase in 5-HT1A autoreceptors display impaired stress responses [19]. However, the specific interaction between 5-HT1A genotype and stress on 5-HT1A receptor expression and behavioural outcomes remains to be tested.

Genome-wide association studies have failed to confirm association with candidate genes [183], in part, because not all candidate gene polymorphisms were examined. However, specific genotype analysis for rs6295 identified an association of the G-allele with more severe depression symptoms and reduced response to citalopram in a subgroup of the STAR*D sample [167]. In the larger sample, rs6295 was not examined, but other 5-HT1A polymorphisms were associated with antidepressant response. Interestingly, preliminary studies suggest that the C-allele may be associated with risk of illnes for premenstrual dysphoria [184] or ADHD [185]. In a separate ADHD cohort, the G-allele was associated with decreased anxiety-fear disorders [175]. These findings need replication, but may suggest that hyperactivity of the 5-HT system due to fewer 5-HT1A autoreceptors could predispose to certain disorders such as ADHD.

7. Conclusion: a model for 5-HT1A receptor dysregulation in affective disorders

The results from studies in animal models and in human depression and anxiety suggest that altered 5-HT1A receptor expression leads to impaired serotonergic function and predisposes to depression and anxiety disorders (figure 1). The G-allele of rs6295 5-HT1A promoter polymorphism or loss of Deaf1 function is associated with 5-HT1A autoreceptor upregulation in vivo [85,101], and inhibition of 5-HT neuronal firing frequency to reduce 5-HT release [19]. In addition, the C(-1019)G polymorphism reduces 5-HT1A heteroreceptor expression in a cell-specific manner [134], with loss of Deaf1 reducing 5-HT1A receptor levels in prefrontal cortex [85]. Other Htr1a polymorphisms in linkage disequilibrium with rs6295 have yet to be functionally characterized and may augment pre- or post-synaptic functions of the C(-1019)G change. Finally, stressful life environment, especially recent stress appears to enhance the susceptibility to depression or suicide that is conferred by the G(-1019) allele. Glucocorticoid-mediated downregulation of hippocampal 5-HT1A heteroreceptor expression could synergize with genotype-driven reductions. Presynaptically, glucocorticoid-induced repression may be particularly important in anxiety, whereas in depression, a blunted cortisol response and lack of stress sensitivity could reduce the effect of cortisol. In anxiety, 5-HT1A autoreceptor expression may be unaffected or reduced due to glucocorticoid-induced repression, while post-synaptic 5-HT1A heteroreceptors would be strongly reduced by both cortisol and rs6295 genotype. On the other hand, in depression, a G-allele-driven increase in 5-HT1A autoreceptor expression would mediate a reduction in 5-HT neuronal activity that predisposes to a depression phenotype [19,20].

Based on the different and sometimes opposing roles of pre- and post-synaptic 5-HT1A receptors in 5-HT regulation and behaviour, we propose that selective pharmacological manipulation of 5-HT1A autoreceptors or heteroceptors might provide a way to improve the treatment of depression and anxiety. Potential approaches to selectively target the 5-HT1A autoreceptor could include targeting its greater autoreceptor reserve [186], Gi3-selective signalling [187,188], or desensitization with biased ligands [189]; targeting its differentially regulation by transcription factors, such as Deaf1 or Freud1 [61]; or by enhancing the use of siRNA-based ligands to downregulate its expression [60]. Recently, intranasal administration of a chemical conjugate of an SSRI to 5-HT1A siRNA was shown to selectively reduce 5-HT1A autoreceptor expression and exert a rapid antidepressant effect, suggesting a novel clinical approach for antidepressant treatment [60]. A combination of selective 5-HT1A autoreceptor inactivation and SSRI treatment should lead to more effective and rapidly acting antidepressant treatment strategies.


P.R.A. was supported by operating funds from the Canadian Institutes of Health Research and equipment funding from the Heart and Stroke Centre for Stroke Recovery.


1. Anden N. E., Carlsson A., Haggendal J. 1969. Adrenergic mechanisms. Annu. Rev. Pharmacol. 9, 119–134 (doi:10.1146/ [PubMed] [Cross Ref]
2. Carlsson A. 1975. Dopamine autoreceptors. In Chemical tools in catecholamine research (eds Almgren O., Carlsson A., Engel J., editors. ), pp. 219–225 Amsterdam, The Netherlands: North-Holland
3. Starke K., Gothert M., Kilbinger H. 1989. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989 [PubMed]
4. Gothert M. 1982. Modulation of serotonin release in the brain via presynaptic receptors. Trends Pharmacol. Sci. 3, 437–440 (doi:10.1016/0165-6147(82)91222-6)10.1016/0165-6147(82)91222-6 [Cross Ref]
5. Aghajanian G. K. 1982. Regulation of serotonergic neuronal activity: autoreceptors and pacemaker potentials. Adv. Biochem. Psychopharmacol. 34, 173–181 [PubMed]
6. Sprouse J. S., Aghajanian G. K. 1987. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1, 3–9 (doi:10.1002/syn.890010103)10.1002/syn.890010103 [PubMed] [Cross Ref]
7. Liu R. J., Lambe E. K., Aghajanian G. K. 2005. Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases. Eur. J. Neurosci. 21, 945–958 (doi:10.1111/j.1460-9568.2005.03930.x)10.1111/j.1460-9568.2005.03930.x [PubMed] [Cross Ref]
8. Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. 1985. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur. J. Pharmacol. 113, 463–464 (doi:10.1016/0014-2999(85)90099-8)10.1016/0014-2999(85)90099-8 [PubMed] [Cross Ref]
9. Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. 1985. [3H]8-hydroxy-2-(di-N-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J. Neurochem. 44, 1685–1696 (doi:10.1111/j.1471-4159.1985.tb07155.x)10.1111/j.1471-4159.1985.tb07155.x [PubMed] [Cross Ref]
10. Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. 1983. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305, 140–142 (doi:10.1038/305140a0)10.1038/305140a0 [PubMed] [Cross Ref]
11. Sotelo C., Cholley B., El Mestikawy S., Gozlan H., Hamon M. 1990. Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur. J. Neurosci. 2, 1144–1154 (doi:10.1111/j.1460-9568.1990.tb00026.x)10.1111/j.1460-9568.1990.tb00026.x [PubMed] [Cross Ref]
12. Penington N. J., Kelly J. S. 1990. Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 4, 751–758 (doi:10.1016/0896-6273(90)90201-P)10.1016/0896-6273(90)90201-P [PubMed] [Cross Ref]
13. He M., Sibille E., Benjamin D., Toth M., Shippenberg T. 2001. Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Res. 902, 11–17 (doi:10.1016/S0006-8993(01)02271-5)10.1016/S0006-8993(01)02271-5 [PubMed] [Cross Ref]
14. Parsons L. H., Kerr T. M., Tecott L. H. 2001. 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J. Neurochem. 77, 607–617 (doi:10.1046/j.1471-4159.2001.00254.x)10.1046/j.1471-4159.2001.00254.x [PubMed] [Cross Ref]
15. Richer M., Hen R., Blier P. 2002. Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur. J. Pharmacol. 435, 195–203 (doi:10.1016/S0014-2999(01)01607-7)10.1016/S0014-2999(01)01607-7 [PubMed] [Cross Ref]
16. Haddjeri N., Lavoie N., Blier P. 2004. Electrophysiological evidence for the tonic activation of 5-HT(1A) autoreceptors in the rat dorsal raphe nucleus. Neuropsychopharmacology 29, 1800–1806 (doi:10.1038/sj.npp.1300489)10.1038/sj.npp.1300489 [PubMed] [Cross Ref]
17. Bortolozzi A., Amargos-Bosch M., Toth M., Artigas F., Adell A. 2004. In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J. Neurochem. 88, 1373–1379 (doi:10.1046/j.1471-4159.2003.02267.x)10.1046/j.1471-4159.2003.02267.x [PubMed] [Cross Ref]
18. Audero E., Coppi E., Mlinar B., Rossetti T., Caprioli A., Banchaabouchi M. A., Corradetti R., Gross C. 2008. Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Science 321, 130–133 (doi:10.1126/science.1157871)10.1126/science.1157871 [PubMed] [Cross Ref]
19. Richardson-Jones J. W., et al. 2010. 5-HT(1A) autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65, 40–52 (doi:10.1016/j.neuron.2009.12.003)10.1016/j.neuron.2009.12.003 [PMC free article] [PubMed] [Cross Ref]
20. Richardson-Jones J. W., et al. 2011. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci. 31, 6008–6018 (doi:10.1523/jneurosci.5836-10.2011)10.1523/jneurosci.5836-10.2011 [PMC free article] [PubMed] [Cross Ref]
21. Engel G., Gothert M., Hoyer D., Schlicker E., Hillenbrand K. 1986. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch. Pharmacol. 332, 1–7 (doi:10.1007/BF00633189)10.1007/BF00633189 [PubMed] [Cross Ref]
22. Hery F., Boulenguez P., Semont A., Hery M., Becquet D., Faudon M., Deprez P., Fache M. P. 1999. Identification and role of serotonin 5-HT1A and 5-HT1B receptors in primary cultures of rat embryonic rostral raphe nucleus neurons. J. Neurochem. 72, 1791–1801 (doi:10.1111/j.1471-4159.1990.tb02365.x)10.1111/j.1471-4159.1990.tb02365.x [PubMed] [Cross Ref]
23. Carrel D., Masson J., Al Awabdh S., Capra C. B., Lenkei Z., Hamon M., Emerit M. B., Darmon M. 2008. Targeting of the 5-HT1A serotonin receptor to neuronal dendrites is mediated by Yif1B. J. Neurosci. 28, 8063–8073 (doi:10.1523/JNEUROSCI.4487-07.2008)10.1523/JNEUROSCI.4487-07.2008 [PubMed] [Cross Ref]
24. Oh E., Maejima T., Liu C., Deneris E. S., Herlitze S. 2010. Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J. Biol. Chem. 285, 30 825–30 836 (doi:10.1074/jbc.M110.147298)10.1074/jbc.M110.147298 [PMC free article] [PubMed] [Cross Ref]
25. Pan Z. Z., Wessendorf M. W., Williams J. T. 1993. Modulation by serotonin of the neurons in rat nucleus raphe magnus in vitro. Neuroscience 54, 421–429 (doi:10.1016/0306-4522(93)90263-F)10.1016/0306-4522(93)90263-F [PubMed] [Cross Ref]
26. Pan Z. Z., Colmers W. F., Williams J. T. 1989. 5-HT-mediated synaptic potentials in the dorsal raphe nucleus: interactions with excitatory amino acid and GABA neurotransmission. J. Neurophysiol. 62, 481–486 [PubMed]
27. Williams J. T., Colmers W. F., Pan Z. Z. 1988. Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J. Neurosci. 8, 3499–3506 [PubMed]
28. Innis R. B., Aghajanian G. K. 1987. Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143, 195–204 (doi:10.1016/0014-2999(87)90533-4)10.1016/0014-2999(87)90533-4 [PubMed] [Cross Ref]
29. Fairchild G., Leitch M. M., Ingram C. D. 2003. Acute and chronic effects of corticosterone on 5-HT1A receptor-mediated autoinhibition in the rat dorsal raphe nucleus. Neuropharmacology 45, 925–934 (doi:10.1016/S0028-3908(03)00269-7)10.1016/S0028-3908(03)00269-7 [PubMed] [Cross Ref]
30. Saenz del Burgo L., Cortes R., Mengod G., Zarate J., Echevarria E., Salles J. 2008. Distribution and neurochemical characterization of neurons expressing GIRK channels in the rat brain. J. Comp. Neurol. 510, 581–606 (doi:10.1002/cne.21810)10.1002/cne.21810 [PubMed] [Cross Ref]
31. Celada P., Puig M., Amargos-Bosch M., Adell A., Artigas F. 2004. The therapeutic role of 5-HT(1A) and 5-HT(2A) receptors in depression. J. Psychiatry Neurosci. 29, 252–265 [PMC free article] [PubMed]
32. Lucas G., Compan V., Charnay Y., Neve R. L., Nestler E. J., Bockaert J., Barrot M., Debonnel G. 2005. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: viral transfections, subacute and chronic treatments with 5-HT4 agonists. Biol. Psychiatry 57, 918–925 (doi:10.1016/j.biopsych.2004.12.023)10.1016/j.biopsych.2004.12.023 [PubMed] [Cross Ref]
33. Hjorth S., Auerbach S. B. 1994. Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. Eur. J. Pharmacol. 260, 251–255 (doi:10.1016/0014-2999(94)90346-8)10.1016/0014-2999(94)90346-8 [PubMed] [Cross Ref]
34. Hjorth S., Bengtsson H. J., Milano S. 1996. Raphe 5-HT1A autoreceptors, but not postsynaptic 5-HT1A receptors or beta-adrenoceptors, restrain the citalopram-induced increase in extracellular 5-hydroxytryptamine in vivo. Eur. J. Pharmacol. 316, 43–47 (doi:10.1016/S0014-2999(96)00779-0)10.1016/S0014-2999(96)00779-0 [PubMed] [Cross Ref]
35. Artigas F., Romero L., de Montigny C., Blier P. 1996. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 19, 378–383 (doi:10.1016/S0166-2236(96)10037-0)10.1016/S0166-2236(96)10037-0 [PubMed] [Cross Ref]
36. Adell A., Celada P., Abellan M. T., Artigas F. 2002. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res. Rev. 39, 154–180 (doi:10.1016/S0165-0173(02)00182-0)10.1016/S0165-0173(02)00182-0 [PubMed] [Cross Ref]
37. Giovacchini G., Lang L., Ma Y., Herscovitch P., Eckelman W. C., Carson R. E. 2005. Differential effects of paroxetine on raphe and cortical 5-HT(1A) binding: a PET study in monkeys. Neuroimage 46, 1128–1135 (doi:10.1016/j.neuroimage.2005.05.042)10.1016/j.neuroimage.2005.05.042 [PubMed] [Cross Ref]
38. Welner S. A., De Montigny C., Desroches J., Desjardins P., Suranyi-Cadotte B. E. 1989. Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse 4, 347–352 (doi:10.1002/syn.890040410)10.1002/syn.890040410 [PubMed] [Cross Ref]
39. Haddjeri N., Blier P., de Montigny C. 1998. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J. Neurosci. 18, 10 150–10 156 [PubMed]
40. Lopez J. F., Chalmers D. T., Little K. Y., Watson S. J. 1998. A. E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry 43, 547–573 (doi:10.1016/S0006-3223(97)00484-8)10.1016/S0006-3223(97)00484-8 [PubMed] [Cross Ref]
41. Shen C., Li H., Meller E. 2002. Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35S]GTP gamma S binding in rat brain regions. Neuropharmacology 42, 1031–1038 (doi:10.1016/S0028-3908(02)00064-3)10.1016/S0028-3908(02)00064-3 [PubMed] [Cross Ref]
42. Hensler J. G. 2003. Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci. 72, 1665–1682 (doi:10.1016/S0024-3205(02)02482-7)10.1016/S0024-3205(02)02482-7 [PubMed] [Cross Ref]
43. Zanoveli J. M., Nogueira R. L., Zangrossi H., Jr 2007. Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52, 1188–1195 (doi:10.1016/j.neuropharm.2007.01.001)10.1016/j.neuropharm.2007.01.001 [PubMed] [Cross Ref]
44. Santarelli L., Gobbi G., Debs P. C., Sibille E. T., Blier P., Hen R., Heath M. J. 2001. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc. Natl Acad. Sci. USA 98, 1912–1917 (doi:10.1073/pnas.041596398)10.1073/pnas.041596398 [PubMed] [Cross Ref]
45. Greene J., Banasr M., Lee B., Warner-Schmidt J., Duman R. S. 2009. Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology 34, 2459–2468 (doi:10.1038/npp.2009.68)10.1038/npp.2009.68 [PMC free article] [PubMed] [Cross Ref]
46. Talbot J. N., Jutkiewicz E. M., Graves S. M., Clemans C. F., Nicol M. R., Mortensen R. M., Huang X., Neubig R. R., Traynor J. R. 2010. RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc. Natl Acad. Sci. USA 107, 11 086–11 091 (doi:10.1073/pnas.1000003107)10.1073/pnas.1000003107 [PubMed] [Cross Ref]
47. Hensler J. G. 2002. Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26, 565–573 (doi:10.1016/S0893-133X(01)00395-5)10.1016/S0893-133X(01)00395-5 [PubMed] [Cross Ref]
48. Elena Castro M., Diaz A., del Olmo E., Pazos A. 2003. Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44, 93–101 (doi:10.1016/S0028-3908(02)00340-4)10.1016/S0028-3908(02)00340-4 [PubMed] [Cross Ref]
49. Rossi D. V., Burke T. F., Hensler J. G. 2008. Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram. Eur. J. Pharmacol. 583, 103–107 (doi:10.1016/j.ejphar.2008.01.022)10.1016/j.ejphar.2008.01.022 [PMC free article] [PubMed] [Cross Ref]
50. Riad M., Rbah L., Verdurand M., Aznavour N., Zimmer L., Descarries L. 2008. Unchanged density of 5-HT(1A) autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine. Neuroscience 151, 692–700 (doi:10.1016/j.neuroscience.2007.11.024)10.1016/j.neuroscience.2007.11.024 [PubMed] [Cross Ref]
51. Riad M., Zimmer L., Rbah L., Watkins K. C., Hamon M., Descarries L. 2004. Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J. Neurosci. 24, 5420–5426 (doi:10.1523/JNEUROSCI.0950-04.2004)10.1523/JNEUROSCI.0950-04.2004 [PubMed] [Cross Ref]
52. Beyer C. E., Ghavami A., Lin Q., Sung A., Rhodes K. J., Dawson L. A., Schechter L. E., Young K. H. 2004. Regulators of G-protein signaling 4: modulation of 5-HT(1A)-mediated neurotransmitter release in vivo. Brain Res. 1022, 214–220 (doi:10.1016/j.brainres.2004.06.073)10.1016/j.brainres.2004.06.073 [PubMed] [Cross Ref]
53. Fanelli R. J., McMonagle-Strucko K. 1992. Alteration of 5-HT1A receptor binding sites following chronic treatment with ipsapirone measured by quantitative autoradiography. Synapse 12, 75–81 (doi:10.1002/syn.890120109)10.1002/syn.890120109 [PubMed] [Cross Ref]
54. Cornelisse L. N., van der Harst J. E., Lodder J. C., Baarendse P. J., Timmerman A., Mansvelder H. D., Spruijt B. M., Brussaard A. B. 2007. Reduced 5-HT1A- and GABAB-receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J. Neurophysiol. 98, 196–204 (doi:10.1152/jn.00109.2007)10.1152/jn.00109.2007 [PubMed] [Cross Ref]
55. Yau J. L., Olsson T., Noble J., Seckl J. R. 1999. Serotonin receptor subtype gene expression in the hippocampus of aged rats following chronic amitriptyline treatment. Brain Res. Mol. Brain Res. 70, 282–287 (doi:10.1016/S0169-328X(99)00172-2)10.1016/S0169-328X(99)00172-2 [PubMed] [Cross Ref]
56. Le Poul E., Boni C., Hanoun N., Laporte A. M., Laaris N., Chauveau J., Hamon M., Lanfumey L. 2000. Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology 39, 110–122 (doi:10.1016/S0028-3908(99)00088-X)10.1016/S0028-3908(99)00088-X [PubMed] [Cross Ref]
57. Casanovas J. M., Vilaro M. T., Mengod G., Artigas F. 1999. Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(di-N-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J. Neurochem. 72, 262–272 (doi:10.1046/j.1471-4159.1999.0720262.x)10.1046/j.1471-4159.1999.0720262.x [PubMed] [Cross Ref]
58. Meltzer C. C., et al. 2004. Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology 29, 2258–2265 (doi:10.1038/sj.npp.1300556)10.1038/sj.npp.1300556 [PubMed] [Cross Ref]
59. Rabiner E. A., Bhagwagar Z., Gunn R. N., Cowen P. J., Grasby P. M. 2004. Preferential 5-HT(1A) autoreceptor occupancy by pindolol is attenuated in depressed patients: effect of treatment or an endophenotype of depression? Neuropsychopharmacology 29, 1688–1698 (doi:10.1038/sj.npp.1300472)10.1038/sj.npp.1300472 [PubMed] [Cross Ref]
60. Bortolozzi A., et al. 2011. Selective siRNA-mediated suppression of 5-HT(1A) autoreceptors evokes strong anti-depressant-like effects. Mol. Psychiatry 17, 612–623 (doi:10.1038/mp.2011.92)10.1038/mp.2011.92 [PubMed] [Cross Ref]
61. Albert P. R., Francois B. L. 2010. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front Neurosci. 4, 35. (doi:10.3389/fnins.2010.00035)10.3389/fnins.2010.00035 [PMC free article] [PubMed] [Cross Ref]
62. Parks C. L., Robinson P. S., Sibille E., Shenk T., Toth M. 1998. Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl Acad. Sci. USA 95, 10 734–10 739 (doi:10.1073/pnas.95.18.10734)10.1073/pnas.95.18.10734 [PubMed] [Cross Ref]
63. Heisler L. K., Chu H. M., Brennan T. J., Danao J. A., Bajwa P., Parsons L. H., Tecott L. H. 1998. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl Acad. Sci. USA 95, 15 049–15 054 (doi:10.1073/pnas.95.25.15049)10.1073/pnas.95.25.15049 [PubMed] [Cross Ref]
64. Ramboz S., Oosting R., Amara D. A., Kung H. F., Blier P., Mendelsohn M., Mann J. J., Brunner D., Hen R. 1998. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl Acad. Sci. USA 95, 14 476–14 481 (doi:10.1073/pnas.95.24.14476)10.1073/pnas.95.24.14476 [PubMed] [Cross Ref]
65. Lo Iacono L., Gross C. 2008. Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J. Neurosci. 28, 6250–6257 (doi:10.1523/JNEUROSCI.5219-07.2008)10.1523/JNEUROSCI.5219-07.2008 [PMC free article] [PubMed] [Cross Ref]
66. Gross C., Zhuang X., Stark K., Ramboz S., Oosting R., Kirby L., Santarelli L., Beck S., Hen R. 2002. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (doi:10.1038/416396a)10.1038/416396a [PubMed] [Cross Ref]
67. Kusserow H., et al. 2004. Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res. Mol. Brain Res. 129, 104–116 (doi:10.1016/j.molbrainres.2004.06.028)10.1016/j.molbrainres.2004.06.028 [PubMed] [Cross Ref]
68. Santarelli L., et al. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (doi:10.1126/science.1083328)10.1126/science.1083328 [PubMed] [Cross Ref]
69. Albert P. R., Zhou Q. Y., Van Tol H. H., Bunzow J. R., Civelli O. 1990. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 265, 5825–5832 [PubMed]
70. Hall H., et al. 1997. Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res. 745, 96–108 (doi:10.1016/S0006-8993(96)01131-6)10.1016/S0006-8993(96)01131-6 [PubMed] [Cross Ref]
71. Wissink S., Meijer O., Pearce D., van der Burg B., van der Saag P. T. 2000. Regulation of the rat serotonin-1A receptor gene by corticosteroids. J. Biol. Chem. 275, 1321–1326 (doi:10.1074/jbc.275.2.1321)10.1074/jbc.275.2.1321 [PubMed] [Cross Ref]
72. Parks C. L., Shenk T. 1996. The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J. Biol. Chem. 271, 4417–4430 (doi:10.1074/jbc.271.8.4417)10.1074/jbc.271.8.4417 [PubMed] [Cross Ref]
73. Albert P. R., Le Francois B., Millar A. M. 2011. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol Brain 4, 21. (doi:10.1186/1756-6606-4-21)10.1186/1756-6606-4-21 [PMC free article] [PubMed] [Cross Ref]
74. Jacobsen K. X., Czesak M., Deria M., Le Francois B., Albert P. R. 2011. Region-specific regulation of 5-HT1A receptor expression by Pet-1-dependent mechanisms in vivo. J. Neurochem. 116, 1066–1076 (doi:10.1111/j.1471-4159.2010.07161.x)10.1111/j.1471-4159.2010.07161.x [PubMed] [Cross Ref]
75. Liu C., Maejima T., Wyler S. C., Casadesus G., Herlitze S., Deneris E. S. 2010. Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci. 13, 1190–1198 (doi:10.1038/nn.2623)10.1038/nn.2623 [PMC free article] [PubMed] [Cross Ref]
76. Lemonde S., Rogaeva A., Albert P. R. 2004. Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J. Neurochem. 88, 857–868 (doi:10.1046/j.1471-4159.2003.02223.x)10.1046/j.1471-4159.2003.02223.x [PubMed] [Cross Ref]
77. Ou X. M., Jafar-Nejad H., Storring J. M., Meng J. H., Lemonde S., Albert P. R. 2000. Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. J. Biol. Chem. 275, 8161–8168 (doi:10.1074/jbc.275.11.8161)10.1074/jbc.275.11.8161 [PubMed] [Cross Ref]
78. Ou X. M., Lemonde S., Jafar-Nejad H., Bown C. D., Goto A., Rogaeva A., Albert P. R. 2003. Freud-1: a novel calcium-regulated repressor of the 5-HT1A receptor gene. J. Neurosci. 23, 7415–7425 [PubMed]
79. Hadjighassem M. R., Austin M. C., Szewczyk B., Daigle M., Stockmeier C. A., Albert P. R. 2009. Human freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol. Psychiatry 66, 214–222 (doi:10.1016/j.biopsych.2009.02.033)10.1016/j.biopsych.2009.02.033 [PubMed] [Cross Ref]
80. Rogaeva A., Albert P. R. 2007. The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur. J. Neurosci. 26, 965–974 (doi:10.1111/j.1460-9568.2007.05727.x)10.1111/j.1460-9568.2007.05727.x [PubMed] [Cross Ref]
81. Hadjighassem M. R., Galaraga K., Albert P. R. 2011. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur. J. Neurosci. 33, 214–223 (doi:10.1111/j.1460-9568.2010.07498.x)10.1111/j.1460-9568.2010.07498.x [PubMed] [Cross Ref]
82. Lemonde S., et al. 2003. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J. Neuroscience 23, 8788–8799 [PubMed]
83. Jacobsen K. X., Vanderluit J., Slack R. S., Albert P. R. 2008. HES1 regulates 5-HT1A receptor gene transcription at a functional polymorphism: essential role in developmental expression. Mol. Cell. Neurosci. 38, 349–358 (doi:10.1016/j.mcn.2008.03.007)10.1016/j.mcn.2008.03.007 [PubMed] [Cross Ref]
84. Kageyama R., Ohtsuka T., Hatakeyama J., Ohsawa R. 2005. Roles of bHLH genes in neural stem cell differentiation. Exp. Cell Res. 306, 343–348 (doi:10.1016/j.yexcr.2005.03.015)10.1016/j.yexcr.2005.03.015 [PubMed] [Cross Ref]
85. Czesak M., Le Francois B., Millar A. M., Deria M., Daigle M., Visvader J. E., Anisman H., Albert P. R. 2012. Increased serotonin-1A (5-HT1A) autoreceptor expression and reduced raphe regulatory Factor-1 (Deaf-1) gene knock-out mice. J. Biol. Chem. 287, 6615–6627 (doi:10.1074/jbc.M111.293027)10.1074/jbc.M111.293027 [PMC free article] [PubMed] [Cross Ref]
86. Goswami D. B., May W. L., Stockmeier C. A., Austin M. C. 2010. Transcriptional expression of serotonergic regulators in laser-captured microdissected dorsal raphe neurons of subjects with major depressive disorder: sex-specific differences. J. Neurochem. 112, 397–409 (doi:10.1111/j.1471-4159.2009.06462.x)10.1111/j.1471-4159.2009.06462.x [PMC free article] [PubMed] [Cross Ref]
87. Chalmers D. T., Lopez J. F., Vazquez D. M., Akil H., Watson S. J. 1994. Regulation of hippocampal 5-HT1A receptor gene expression by dexamethasone. Neuropsychopharmacology 10, 215–222 [PubMed]
88. Zhong P., Ciaranello R. D. 1995. Transcriptional regulation of hippocampal 5-HT1a receptors by corticosteroid hormones. Brain Res. Mol. Brain Res. 29, 23–34 (doi:10.1016/0169-328X(94)00225-4)10.1016/0169-328X(94)00225-4 [PubMed] [Cross Ref]
89. Ou X. M., Storring J. M., Kushwaha N., Albert P. R. 2001. Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J. Biol. Chem. 276, 14 299–14 307 (doi:10.1074/jbc.M005363200)10.1074/jbc.M005363200 [PubMed] [Cross Ref]
90. Neumaier J. F., Sexton T. J., Hamblin M. W., Beck S. G. 2000. Corticosteroids regulate 5-HT(1A) but not 5-HT(1B) receptor mRNA in rat hippocampus. Brain Res. Mol. Brain Res. 82, 65–73 (doi:10.1016/S0169-328X(00)00181-9)10.1016/S0169-328X(00)00181-9 [PMC free article] [PubMed] [Cross Ref]
91. Meijer O. C., de Kloet E. R. 1995. A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5-HT1A receptor mRNA by corticosterone. J. Neuroendocrinol. 7, 653–657 (doi:10.1111/j.1365-2826.1995.tb00804.x)10.1111/j.1365-2826.1995.tb00804.x [PubMed] [Cross Ref]
92. Meijer O. C., Cole T. J., Schmid W., Schutz G., Joels M., De Kloet E. R. 1997. Regulation of hippocampal 5-HT1A receptor mRNA and binding in transgenic mice with a targeted disruption of the glucocorticoid receptor. Brain Res. Mol. Brain Res. 46, 290–296 (doi:10.1016/S0169-328X(97)00002-8)10.1016/S0169-328X(97)00002-8 [PubMed] [Cross Ref]
93. Lanzenberger R., et al. 2010. Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int. J. Neuropsychopharmacol. 13, 1129–1143 (doi:10.1017/S1461145710000581)10.1017/S1461145710000581 [PubMed] [Cross Ref]
94. Froger N., et al. 2004. Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J. Neurosci. 24, 2787–2796 (doi:10.1523/JNEUROSCI.4132-03.2004)10.1523/JNEUROSCI.4132-03.2004 [PubMed] [Cross Ref]
95. Evrard A., Barden N., Hamon M., Adrien J. 2006. Glucocorticoid receptor-dependent desensitization of 5-HT1A autoreceptors by sleep deprivation: studies in GR-i transgenic mice. Sleep 29, 31–36 [PubMed]
96. Meijer O. C., de Kloet E. R. 1998. Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit. Rev. Neurobiol. 12, 1–20 [PubMed]
97. Wei Q., et al. 2004. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc. Natl Acad. Sci. USA 101, 11 851–11 856 (doi:10.1073/pnas.0402208101)10.1073/pnas.0402208101 [PubMed] [Cross Ref]
98. Rozeboom A. M., Akil H., Seasholtz A. F. 2007. Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc. Natl Acad. Sci. USA 104, 4688–4693 (doi:10.1073/pnas.0606067104)10.1073/pnas.0606067104 [PubMed] [Cross Ref]
99. Stockmeier C. A., Shapiro L. A., Dilley G. E., Kolli T. N., Friedman L., Rajkowska G. 1998. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J. Neurosci. 18, 7394–7401 [PubMed]
100. Boldrini M., Underwood M. D., Mann J. J., Arango V. 2008. Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J. Psychiatry Res. 42, 433–442 (doi:10.1016/j.jpsychires.2007.05.004)10.1016/j.jpsychires.2007.05.004 [PMC free article] [PubMed] [Cross Ref]
101. Parsey R. V., et al. 2010. Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biol. Psychiatry 68, 170–178 (doi:10.1016/j.biopsych.2010.03.023)10.1016/j.biopsych.2010.03.023 [PMC free article] [PubMed] [Cross Ref]
102. Parsey R. V., Olvet D. M., Oquendo M. A., Huang Y. Y., Ogden R. T., Mann J. J. 2006. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology 31, 1745–1749 (doi:10.1038/sj.npp.1300992)10.1038/sj.npp.1300992 [PubMed] [Cross Ref]
103. Miller J. M., Brennan K. G., Ogden T. R., Oquendo M. A., Sullivan G. M., Mann J. J., Parsey R. V. 2009. Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 34, 2275–2284 (doi:10.1038/npp.2009.54)10.1038/npp.2009.54 [PMC free article] [PubMed] [Cross Ref]
104. Sullivan G. M., Ogden R. T., Oquendo M. A., Kumar J. S., Simpson N., Huang Y. Y., Mann J. J., Parsey R. V. 2009. Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Biol. Psychiatry 66, 223–230 (doi:10.1016/j.biopsych.2009.01.028)10.1016/j.biopsych.2009.01.028 [PMC free article] [PubMed] [Cross Ref]
105. Stockmeier C. A. 2003. Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J. Psychiatry Res. 37, 357–373 (doi:10.1016/S0022-3956(03)00050-5)10.1016/S0022-3956(03)00050-5 [PubMed] [Cross Ref]
106. Stockmeier C. A., Howley E., Shi X., Sobanska A., Clarke G., Friedman L., Rajkowska G. 2009. Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder. J. Psychiatry Res. 43, 887–894 (doi:10.1016/j.jpsychires.2009.01.001)10.1016/j.jpsychires.2009.01.001 [PMC free article] [PubMed] [Cross Ref]
107. Anisman H., Du L., Palkovits M., Faludi G., Kovacs G. G., Szontagh-Kishazi P., Merali Z., Poulter M. O. 2008. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J. Psychiatry Neurosci. 33, 131–141 [PMC free article] [PubMed]
108. Underwood M. D., Kassir S. A., Bakalian M. J., Galfalvy H., Mann J. J., Arango V. 2011. Neuron density and serotonin receptor binding in prefrontal cortex in suicide. Int. J. Neuropsychopharmacol. 15, 435–447 (doi:10.1017/s1461145711000691)10.1017/s1461145711000691 [PubMed] [Cross Ref]
109. Savitz J., Lucki I., Drevets W. C. 2009. 5-HT(1A) receptor function in major depressive disorder. Prog. Neurobiol. 88, 17–31 (doi:10.1016/j.pneurobio.2009.01.009)10.1016/j.pneurobio.2009.01.009 [PMC free article] [PubMed] [Cross Ref]
110. Sargent P. A., Kjaer K. H., Bench C. J., Rabiner E. A., Messa C., Meyer J., Gunn R. N., Grasby P. M., Cowen P. J. 2000. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry 57, 174–180 (doi:10.1001/archpsyc.57.2.174)10.1001/archpsyc.57.2.174 [PubMed] [Cross Ref]
111. Bhagwagar Z., Rabiner E. A., Sargent P. A., Grasby P. M., Cowen P. J. 2004. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol. Psychiatry 9, 386–392 (doi:10.1038/ [PubMed] [Cross Ref]
112. Cleare A. J., Messa C., Rabiner E. A., Grasby P. M. 2005. Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol. Psychiatry 57, 239–246 (doi:10.1016/j.biopsych.2004.10.031)10.1016/j.biopsych.2004.10.031 [PubMed] [Cross Ref]
113. Hirvonen J., Karlsson H., Kajander J., Lepola A., Markkula J., Rasi-Hakala H., Nagren K., Salminen J. K., Hietala J. 2008. Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. Int. J. Neuropsychopharmacol. 11, 465–476 (doi:10.1017/S1461145707008140)10.1017/S1461145707008140 [PubMed] [Cross Ref]
114. Neumeister A., et al. 2004. Reduced serotonin type 1A receptor binding in panic disorder. J. Neurosci. 24, 589–591 (doi:10.1523/JNEUROSCI.4921-03.2004)10.1523/JNEUROSCI.4921-03.2004 [PubMed] [Cross Ref]
115. Nash J. R., Sargent P. A., Rabiner E. A., Hood S. D., Argyropoulos S. V., Potokar J. P., Grasby P. M., Nutt D. J. 2008. Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. Br. J. Psychiatry 193, 229–234 (doi:10.1192/bjp.bp.107.041186)10.1192/bjp.bp.107.041186 [PubMed] [Cross Ref]
116. Lanzenberger R. R., et al. 2007. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol. Psychiatry 61, 1081–1089 (doi:10.1016/j.biopsych.2006.05.022)10.1016/j.biopsych.2006.05.022 [PubMed] [Cross Ref]
117. Tauscher J., Bagby R. M., Javanmard M., Christensen B. K., Kasper S., Kapur S. 2001. Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: a [(11)C]WAY-100635 PET investigation in healthy volunteers. Am. J. Psychiatry 158, 1326–1328 (doi:10.1176/appi.ajp.158.8.1326)10.1176/appi.ajp.158.8.1326 [PubMed] [Cross Ref]
118. Sullivan G. M., Oquendo M. A., Simpson N., Van Heertum R. L., Mann J. J., Parsey R. V. 2005. Brain serotonin1A receptor binding in major depression is related to psychic and somatic anxiety. Biol. Psychiatry 58, 947–954 (doi:10.1016/j.biopsych.2005.05.006)10.1016/j.biopsych.2005.05.006 [PubMed] [Cross Ref]
119. Hesselgrave N., Parsey R. V. In press Imaging the serotonin 1A receptor using [11C]WAY100635 in healthy controls and major depression. Phil. Trans. R. Soc. B. [PMC free article] [PubMed]
120. Hume S., Hirani E., Opacka-Juffry J., Myers R., Townsend C., Pike V., Grasby P. 2001. Effect of 5-HT on binding of [(11)C] WAY 100635 to 5-HT(IA) receptors in rat brain, assessed using in vivo microdialysis and PET after fenfluramine. Synapse 41, 150–159 (10.1002/syn.1069)10.1002/syn.1069 [PubMed] [Cross Ref]
121. Udo de Haes J. I., Cremers T. I., Bosker F. J., Postema F., Tiemersma-Wegman T. D., den Boer J. A. 2005. Effect of increased serotonin levels on [18F]MPPF binding in rat brain: fenfluramine versus the combination of citalopram and ketanserin. Neuropsychopharmacology 30, 1624–1631 (10.1038/sj.npp.1300721)10.1038/sj.npp.1300721 [PubMed] [Cross Ref]
122. Milak M. S., Severance A. J., Ogden R. T., Prabhakaran J., Kumar J. S., Majo V. J., Mann J. J., Parsey R. V. 2008. Modeling considerations for 11C-CUMI-101, an agonist radiotracer for imaging serotonin 1A receptor in vivo with PET. J. Nucl. Med. 49, 587–596 (doi:10.2967/jnumed.107.046540)10.2967/jnumed.107.046540 [PMC free article] [PubMed] [Cross Ref]
123. Fisher P. M., Meltzer C. C., Ziolko S. K., Price J. C., Moses-Kolko E. L., Berga S. L., Hariri A. R. 2006. Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat. Neurosci. 9, 1362–1363 (doi:10.1038/nn1780)10.1038/nn1780 [PubMed] [Cross Ref]
124. Jovanovic H., Perski A., Berglund H., Savic I. 2011. Chronic stress is linked to 5-HT(1A) receptor changes and functional disintegration of the limbic networks. Neuroimage 55, 1178–1188 (doi:10.1016/j.neuroimage.2010.12.060)10.1016/j.neuroimage.2010.12.060 [PubMed] [Cross Ref]
125. Stiedl O., Misane I., Spiess J., Ogren S. O. 2000. Involvement of the 5-HT1A receptors in classical fear conditioning in C57BL/6J mice. J. Neurosci. 20, 8515–8527 [PubMed]
126. Spindelegger C., et al. 2009. Influence of escitalopram treatment on 5-HT(1A) receptor binding in limbic regions in patients with anxiety disorders. Mol. Psychiatry 14, 1040–1050 (doi:10.1038/mp.2008.35)10.1038/mp.2008.35 [PubMed] [Cross Ref]
127. Rabiner E. A., Gunn R. N., Wilkins M. R., Sargent P. A., Mocaer E., Sedman E., Cowen P. J., Grasby P. M. 2000. Drug action at the 5-HT(1A) receptor in vivo: autoreceptor and postsynaptic receptor occupancy examined with PET and [carbonyl-(11)C]WAY-100635. Nucl. Med. Biol. 27, 509–513 (doi:10.1016/S0969-8051(00)00120-7)10.1016/S0969-8051(00)00120-7 [PubMed] [Cross Ref]
128. Hirani E., Opacka-Juffry J., Gunn R., Khan I., Sharp T., Hume S. 2000. Pindolol occupancy of 5-HT(1A) receptors measured in vivo using small animal positron emission tomography with carbon-11 labeled WAY 100635. Synapse 36, 330–341 (doi:10.1002/(SICI)1098-2396(20000615)36:4<330::AID-SYN10>3.0.CO;2-H)10.1002/(SICI)1098-2396(20000615)36:4<330::AID-SYN10>3.0.CO;2-H [PubMed] [Cross Ref]
129. Blier P., Ward N. M. 2003. Is there a role for 5-HT(1A) agonists in the treatment of depression? Biol. Psychiatry 53, 193–203 (doi:10.1016/S0006-3223(02)01643-8)10.1016/S0006-3223(02)01643-8 [PubMed] [Cross Ref]
130. Trivedi M. H., et al. 2006. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med. 354, 1243–1252 (doi:10.1056/NEJMoa052964)10.1056/NEJMoa052964 [PubMed] [Cross Ref]
131. Llado-Pelfort L., Assie M. B., Newman-Tancredi A., Artigas F., Celada P. 2010. Preferential in vivo action of F15599, a novel 5-HT(1A) receptor agonist, at postsynaptic 5-HT(1A) receptors. Br. J. Pharmacol. 160, 1929–1940 (10.1111/j.1476-5381.2010.00738.x)10.1111/j.1476-5381.2010.00738.x [PMC free article] [PubMed] [Cross Ref]
132. Jacobsen J. P., Siesser W. B., Sachs B. D., Peterson S., Cools M. J., Setola V., Folgering J. H., Flik G., Caron M. G. 2012. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol. Psychiatry 12, 694–704 (doi:10.1038/mp.2011.50)10.1038/mp.2011.50 [PMC free article] [PubMed] [Cross Ref]
133. Kiyasova V., Fernandez S. P., Laine J., Stankovski L., Muzerelle A., Doly S., Gaspar P. 2011. A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J. Neurosci. 31, 2756–2768 (doi:10.1523/jneurosci.4080-10.2011)10.1523/jneurosci.4080-10.2011 [PubMed] [Cross Ref]
134. Czesak M., Lemonde S., Peterson E. A., Rogaeva A., Albert P. R. 2006. Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J. Neurosci. 26, 1864–1871 (doi:10.1523/JNEUROSCI.2643-05.2006)10.1523/JNEUROSCI.2643-05.2006 [PubMed] [Cross Ref]
135. Lothe A., Boni C., Costes N., Bouvard S., Gorwood P., Lavenne F., Alvarez M., Ryvlin P. 2010. 5-HT1A gene promoter polymorphism and [18F]MPPF binding potential in healthy subjects: a PET study. Behav. Brain Funct. 6, 37. (doi:10.1186/1744-9081-6-37)10.1186/1744-9081-6-37 [PMC free article] [PubMed] [Cross Ref]
136. David S. P., Murthy N. V., Rabiner E. A., Munafo M. R., Johnstone E. C., Jacob R., Walton R. T., Grasby P. M. 2005. A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J. Neurosci. 25, 2586–2590 (doi:10.1523/JNEUROSCI.3769-04.2005)10.1523/JNEUROSCI.3769-04.2005 [PMC free article] [PubMed] [Cross Ref]
137. Lundberg J., Borg J., Halldin C., Farde L. 2007. A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain. Psychopharmacology (Berl.) 195, 425–433 (doi:10.1007/s00213-007-0928-3)10.1007/s00213-007-0928-3 [PubMed] [Cross Ref]
138. Lothe A., Boni C., Costes N., Gorwood P., Bouvard S., Le Bars D., Lavenne F., Ryvlin P. 2009. Association between triallelic polymorphism of the serotonin transporter and [18F]MPPF binding potential at 5-HT1A receptors in healthy subjects. Neuroimage 47, 482–492 (doi:10.1016/j.neuroimage.2009.04.067)10.1016/j.neuroimage.2009.04.067 [PubMed] [Cross Ref]
139. Arango V., Underwood M. D., Gubbi A. V., Mann J. J. 1995. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res. 688, 121–133 (doi:10.1016/0006-8993(95)00523-S)10.1016/0006-8993(95)00523-S [PubMed] [Cross Ref]
140. Moses-Kolko E. L., et al. 2007. Measurement of 5-HT1A receptor binding in depressed adults before and after antidepressant drug treatment using positron emission tomography and [11C]WAY-100635. Synapse 61, 523–530 (doi:10.1002/syn.20398)10.1002/syn.20398 [PubMed] [Cross Ref]
141. Hahn A., Lanzenberger R., Wadsak W., Spindelegger C., Moser U., Mien L. K., Mitterhauser M., Kasper S. 2010. Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J. Neurosci. 30, 14 482–14 489 (doi:10.1523/JNEUROSCI.2409-10.2010)10.1523/JNEUROSCI.2409-10.2010 [PubMed] [Cross Ref]
142. Jovanovic H., Cerin A., Karlsson P., Lundberg J., Halldin C., Nordstrom A. L. 2006. A PET study of 5-HT1A receptors at different phases of the menstrual cycle in women with premenstrual dysphoria. Psychiatry Res. 148, 185–193 (doi:10.1016/j.pscychresns.2006.05.002)10.1016/j.pscychresns.2006.05.002 [PubMed] [Cross Ref]
143. Le François B., Czesak M., Steubl D., Albert P. R. 2008. Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 55, 977–985 (doi:10.1016/j.neuropharm.2008.06.046)10.1016/j.neuropharm.2008.06.046 [PubMed] [Cross Ref]
144. Kishi T., et al. 2009. Serotonin 1A receptor gene and major depressive disorder: an association study and meta-analysis. J. Hum. Genet. 54, 629–633 (doi:10.1038/jhg.2009.84)10.1038/jhg.2009.84 [PubMed] [Cross Ref]
145. Neff C. D., et al. 2009. Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol. Psychiatry 14, 621–630 (doi:10.1038/mp.2008.8)10.1038/mp.2008.8 [PubMed] [Cross Ref]
146. Anttila S., Huuhka K., Huuhka M., Rontu R., Hurme M., Leinonen E., Lehtimaki T. 2007. Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J. Neural Transm. 114, 1065–1068 (doi:10.1007/s00702-007-0705-9)10.1007/s00702-007-0705-9 [PubMed] [Cross Ref]
147. Kishi T., et al. 2011. Serotonin 1A receptor gene, schizophrenia and bipolar disorder: an association study and meta-analysis. Psychiatry Res. 185, 20–26 (doi:10.1016/j.psychres.2010.06.003)10.1016/j.psychres.2010.06.003 [PubMed] [Cross Ref]
148. Kim H. K., Kim S. J., Lee Y. J., Lee H. J., Kang S. G., Choi J. E., Yun K. W., Lim W. J. 2011. Influence of the interaction between the serotonin 1A receptor C-1019G polymorphism and negative life stressors on the development of depression. Neuropsychobiology 64, 1–8 (doi:10.1159/000322144)10.1159/000322144 [PubMed] [Cross Ref]
149. Choi W. S., Lee B. H., Yang J. C., Kim Y. K. 2010. Association study between 5-HT1A receptor gene C(-1019)G polymorphism and panic disorder in a Korean population. Psychiatry Invest. 7, 141–146 (doi:10.4306/pi.2010.7.2.141)10.4306/pi.2010.7.2.141 [PMC free article] [PubMed] [Cross Ref]
150. Molina E., Cervilla J., Rivera M., Torres F., Bellon J. A., Moreno B., King M., Nazareth I., Gutierrez B. 2011. Polymorphic variation at the serotonin 1-A receptor gene is associated with comorbid depression and generalized anxiety. Psychiatry Genet. 21, 195–201 (doi:10.1097/YPG.0b013e3283457a48)10.1097/YPG.0b013e3283457a48 [PubMed] [Cross Ref]
151. Schmitz A., Kirsch P., Reuter M., Alexander N., Kozyra E., Kuepper Y., Osinsky R., Hennig J. 2009. The 5-HT1A C(-1019)G polymorphism, personality and electrodermal reactivity in a reward/punishment paradigm. Int. J. Neuropsychopharmacol. 12, 383–392 (doi:10.1017/S1461145708009401)10.1017/S1461145708009401 [PubMed] [Cross Ref]
152. Blaya C., Salum G. A., Moorjani P., Seganfredo A. C., Heldt E., Leistner-Segal S., Smoller J. W., Manfro G. G. 2011. Panic disorder and serotonergic genes (SLC6A4, HTR1A and HTR2A): association and interaction with childhood trauma and parenting. Neurosci. Lett. 485, 11–15 (doi:10.1016/j.neulet.2010.08.042)10.1016/j.neulet.2010.08.042 [PubMed] [Cross Ref]
153. Lim S. W., Ha J., Shin D. W., Woo H. Y., Kim K. H. 2010. Associations between the serotonin-1A receptor C(-1019)G polymorphism and disordered eating symptoms in female adolescents. J. Neural Transm. 117, 773–779 (doi:10.1007/s00702-010-0412-9)10.1007/s00702-010-0412-9 [PubMed] [Cross Ref]
154. Lee Y. S., Choi S. W., Han D. H., Kim D. J., Joe K. H. 2009. Clinical manifestation of alcohol withdrawal symptoms related to genetic polymorphisms of two serotonin receptors and serotonin transporter. Eur. Addict. Res. 15, 39–46 (doi:10.1159/000173008)10.1159/000173008 [PubMed] [Cross Ref]
155. Videtic A., Zupanc T., Pregelj P., Balazic J., Tomori M., Komel R. 2009. Suicide, stress and serotonin receptor 1A promoter polymorphism –1019C>G in Slovenian suicide victims. Eur. Arch. Psychiatry Clin. Neurosci. 259, 234–238 (doi:10.1007/s00406-008-0861-4)10.1007/s00406-008-0861-4 [PubMed] [Cross Ref]
156. Fakra E., et al. 2009. Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Arch. Gen. Psychiatry 66, 33–40 (doi:10.1001/archpsyc.66.1.33)10.1001/archpsyc.66.1.33 [PMC free article] [PubMed] [Cross Ref]
157. Domschke K., et al. 2006. Association of the functional -1019C/G 5-HT1A polymorphism with prefrontal cortex and amygdala activation measured with 3 T fMRI in panic disorder. Int. J. Neuropsychopharmacol. 9, 349–355 (doi:10.1017/S1461145705005869)10.1017/S1461145705005869 [PubMed] [Cross Ref]
158. Dannlowski U., et al. 2007. Serotonergic genes modulate amygdala activity in major depression. Genes Brain Behav. 6, 672–676 (doi:10.1111/j.1601-183X.2006.00297.x)10.1111/j.1601-183X.2006.00297.x [PubMed] [Cross Ref]
159. Beste C., Domschke K., Falkenstein M., Konrad C. 2010. Differential modulations of response control processes by 5-HT1A gene variation. Neuroimage 50, 764–771 (doi:10.1016/j.neuroimage.2009.11.067)10.1016/j.neuroimage.2009.11.067 [PubMed] [Cross Ref]
160. Beste C., Domschke K., Kolev V., Yordanova J., Baffa A., Falkenstein M., Konrad C. 2010. Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum. Brain Mapp. 31, 621–630 [PubMed]
161. Beste C., Domschke K., Radenz B., Falkenstein M., Konrad C. 2011. The functional 5-HT1A receptor polymorphism affects response inhibition processes in a context-dependent manner. Neuropsychologia 49, 2664–2672 (doi:10.1016/j.neuropsychologia.2011.05.014)10.1016/j.neuropsychologia.2011.05.014 [PubMed] [Cross Ref]
162. Beste C., Heil M., Domschke K., Konrad C. 2010. The relevance of the functional 5-HT1A receptor polymorphism for attention and working memory processes during mental rotation of characters. Neuropsychologia 48, 1248–1254 (doi:10.1016/j.neuropsychologia.2009.12.025)10.1016/j.neuropsychologia.2009.12.025 [PubMed] [Cross Ref]
163. Serretti A., Artioli P., Lorenzi C., Pirovano A., Tubazio V., Zanardi R. 2004. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int. J. Neuropsychopharmacol. 7, 453–460 (doi:10.1017/S1461145704004687)10.1017/S1461145704004687 [PubMed] [Cross Ref]
164. Yevtushenko O. O., Oros M. M., Reynolds G. P. 2010. Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J. Affect. Disord. 123, 308–311 (doi:10.1016/j.jad.2009.09.007)10.1016/j.jad.2009.09.007 [PubMed] [Cross Ref]
165. Lemonde S., Du L., Bakish D., Hrdina P., Albert P. R. 2004. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int. J. Neuropsychopharmacol. 7, 501–506 (doi:10.1017/S1461145704004699)10.1017/S1461145704004699 [PubMed] [Cross Ref]
166. Kato M., et al. 2009. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am. J. Med. Genet. B. Neuropsychiatry Genet. 150B, 115–123 (doi:10.1002/ajmg.b.30783)10.1002/ajmg.b.30783 [PubMed] [Cross Ref]
167. Villafuerte S. M., Vallabhaneni K., Sliwerska E., McMahon F. J., Young E. A., Burmeister M. 2009. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatry Genet. 19, 281–291 (doi:10.1097/YPG.0b013e32832a506e)10.1097/YPG.0b013e32832a506e [PMC free article] [PubMed] [Cross Ref]
168. Reynolds G. P., Arranz B., Templeman L. A., Fertuzinhos S., San L. 2006. Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am. J. Psychiatry 163, 1826–1829 (doi:10.1176/appi.ajp.163.10.1826)10.1176/appi.ajp.163.10.1826 [PubMed] [Cross Ref]
169. Wang L., Fang C., Zhang A., Du J., Yu L., Ma J., Feng G., Xing Q., He L. 2008. The -1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J. Psychopharmacol. 22, 904–909 (doi:10.1177/0269881107081522)10.1177/0269881107081522 [PubMed] [Cross Ref]
170. Chipman P., Jorm A. F., Tan X. Y., Easteal S. 2010. No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depression. Psychiatry Genet. 20, 8–13 (doi:10.1097/YPG.0b013e3283351140)10.1097/YPG.0b013e3283351140 [PubMed] [Cross Ref]
171. Koller G., Bondy B., Preuss U. W., Zill P., Soyka M. 2006. The C(-1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients. Behav. Brain Funct. 2, 7. (doi:10.1186/1744-9081-2-7)10.1186/1744-9081-2-7 [PMC free article] [PubMed] [Cross Ref]
172. Wasserman D., Geijer T., Sokolowski M., Rozanov V., Wasserman J. 2006. The serotonin 1A receptor C(-1019)G polymorphism in relation to suicide attempt. Behav. Brain Funct. 2, 14. (doi:10.1186/1744-9081-2-14)10.1186/1744-9081-2-14 [PMC free article] [PubMed] [Cross Ref]
173. Zetzsche T., et al. 2008. 5-HT1A receptor gene C -1019 G polymorphism and amygdala volume in borderline personality disorder. Genes Brain Behav. 7, 306–313 (doi:10.1111/j.1601-183X.2007.00353.x)10.1111/j.1601-183X.2007.00353.x [PubMed] [Cross Ref]
174. Caspi A., et al. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (doi:10.1126/science.1083968)10.1126/science.1083968 [PubMed] [Cross Ref]
175. Jacob C. P., et al. 2010. A gene-environment investigation on personality traits in two independent clinical sets of adult patients with personality disorder and attention deficit/hyperactive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 260, 317–326 (doi:10.1007/s00406-009-0079-0)10.1007/s00406-009-0079-0 [PubMed] [Cross Ref]
176. Benedetti F., Radaelli D., Poletti S., Locatelli C., Dallaspezia S., Lorenzi C., Pirovano A., Colombo C., Smeraldi E. 2011. Association of the C(-1019)G 5-HT1A promoter polymorphism with exposure to stressors preceding hospitalization for bipolar depression. J. Affect. Disord. 132, 297–300 (doi:10.1016/j.jad.2011.02.024)10.1016/j.jad.2011.02.024 [PubMed] [Cross Ref]
177. Vicentic A., Francis D., Moffett M., Lakatos A., Rogge G., Hubert G. W., Harley J., Kuhar M. J. 2006. Maternal separation alters serotonergic transporter densities and serotonergic 1A receptors in rat brain. Neuroscience 140, 355–365 (doi:10.1016/j.neuroscience.2006.02.008)10.1016/j.neuroscience.2006.02.008 [PubMed] [Cross Ref]
178. Law A. J., Pei Q., Feldon J., Pryce C. R., Harrison P. J. 2009. Gene expression in the anterior cingulate cortex and amygdala of adolescent marmoset monkeys following parental separations in infancy. Int. J. Neuropsychopharmacol. 12, 761–772 (doi:10.1017/S1461145708009723)10.1017/S1461145708009723 [PMC free article] [PubMed] [Cross Ref]
179. Goodfellow N. M., Benekareddy M., Vaidya V. A., Lambe E. K. 2009. Layer II/III of the prefrontal cortex: inhibition by the serotonin 5-HT1A receptor in development and stress. J. Neurosci. 29, 10 094–10 103 (doi:10.1523/JNEUROSCI.1960-09.2009)10.1523/JNEUROSCI.1960-09.2009 [PMC free article] [PubMed] [Cross Ref]
180. Armbruster D., Mueller A., Strobel A., Lesch K. P., Brocke B., Kirschbaum C. 2011. Predicting cortisol stress responses in older individuals: influence of serotonin receptor 1A gene (HTR1A) and stressful life events. Horm. Behav. 60, 105–111 (doi:10.1016/j.yhbeh.2011.03.010)10.1016/j.yhbeh.2011.03.010 [PubMed] [Cross Ref]
181. Birmingham D. J., et al. 2006. Fluctuation in self-perceived stress and increased risk of flare in patients with lupus nephritis carrying the serotonin receptor 1A -1019 G allele. Arthritis Rheum. 54, 3291–3299 (doi:10.1002/art.22135)10.1002/art.22135 [PubMed] [Cross Ref]
182. Southwick S. M., Vythilingam M., Charney D. S. 2005. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu. Rev. Clin. Psychol. 1, 255–291 (doi:10.1146/annurev.clinpsy.1.102803.143948)10.1146/annurev.clinpsy.1.102803.143948 [PubMed] [Cross Ref]
183. Bosker F. J., et al. 2011. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol. Psychiatry 16, 516–532 (doi:10.1038/mp.2010.38)10.1038/mp.2010.38 [PubMed] [Cross Ref]
184. Dhingra V., Magnay J. L., O'Brien P. M., Chapman G., Fryer A. A., Ismail K. M. 2007. Serotonin receptor 1A C(-1019)G polymorphism associated with premenstrual dysphoric disorder. Obstet. Gynecol. 110, 788–792 (doi:10.1097/ [PubMed] [Cross Ref]
185. Shim S. H., Hwangbo Y., Kwon Y. J., Jeong H. Y., Lee B. H., Hwang J. A., Kim Y. K. 2010. A case-control association study of serotonin 1A receptor gene and tryptophan hydroxylase 2 gene in attention deficit hyperactivity disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 974–979 (doi:10.1016/j.pnpbp.2010.05.006)10.1016/j.pnpbp.2010.05.006 [PubMed] [Cross Ref]
186. Cox R. F., Meller E., Waszczak B. L. 1993. Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT1A agonists. Synapse 14, 297–304 (doi:10.1002/syn.890140407)10.1002/syn.890140407 [PubMed] [Cross Ref]
187. Valdizan E. M., Castro E., Pazos A. 2010. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Int. J. Neuropsychopharmacol. 13, 835–843 (doi:10.1017/S1461145709990940)10.1017/S1461145709990940 [PubMed] [Cross Ref]
188. Mannoury la Cour C., El Mestikawy S., Hanoun N., Hamon M., Lanfumey L. 2006. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol. Pharmacol. 70, 1013–1021 (doi:10.1124/mol.106.022756)10.1124/mol.106.022756 [PubMed] [Cross Ref]
189. Newman-Tancredi A., Cussac D., Marini L., Millan M. J. 2002. Antibody capture assay reveals bell-shaped concentration-response isotherms for H5-HT(1A) receptor-mediated Galpha(i3) activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol. Pharmacol. 62, 590–601 (doi:10.1124/mol.62.3.590)10.1124/mol.62.3.590 [PubMed] [Cross Ref]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society