PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 July 1; 68(Pt 7): o2210–o2211.
Published online 2012 June 27. doi:  10.1107/S1600536812027936
PMCID: PMC3394006

Dimethyl 4-[3-(4-meth­oxy­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate dihydrate

Abstract

In the title compound, C27H27N3O5·2H2O, the dihydro­pyridine ring adopts a flattened boat conformation. The central pyrazole ring is essentially planar [maximum deviation of 0.003 (1) Å] and makes dihedral angles of 50.42 (6) and 26.44 (6)° with the benzene rings. In the crystal, mol­ecules are linked via N—H(...)O, O—H(...)O, O—H(...)N and C—H(...)O hydrogen bonds into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H(...)π inter­actions.

Related literature  

For details and applications of pyrazoles, see: Buhler & Kiowski (1987 [triangle]); Isloor et al. (2000 [triangle], 2009 [triangle]); Isloor (2011 [triangle]); Vijesh et al. (2011 [triangle]); Vo et al. (1995 [triangle]). For the preparation of the compound, see: Trivedi et al. (2011 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For related structures, see: Fun et al. (2011 [triangle], 2012 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o2210-scheme1.jpg

Experimental  

Crystal data  

  • C27H27N3O5·2H2O
  • M r = 509.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o2210-efi1.jpg
  • a = 14.1279 (9) Å
  • b = 11.6313 (7) Å
  • c = 15.3780 (9) Å
  • β = 93.358 (1)°
  • V = 2522.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.34 × 0.17 × 0.14 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.968, T max = 0.987
  • 28375 measured reflections
  • 7347 independent reflections
  • 5683 reflections with I > 2σ(I)
  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.131
  • S = 1.04
  • 7347 reflections
  • 359 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027936/sj5244sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027936/sj5244Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812027936/sj5244Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. AMI is thankful to the Board of Research in Nuclear Sciences, Government of India, for a Young Scientist award. AMI also thanks the Vision Group on Science & Technology, Government of Karnataka, India, for the best research paper award.

supplementary crystallographic information

Comment

In the recent years, pyrazoles and their derivatives have attracted medicinal chemists because of their varied biological properties such as anti-microbial (Isloor et al., 2009), analgesic (Isloor et al., 2000; Isloor, 2011) and anti-inflammatory (Vijesh et al., 2011) activities. They are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of dihydropyridine (DHP) derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). In view of this potential biological importance, we have synthesised the title DHP compound and report its structure here.

The asymmetric unit of the title compound (Fig. 1), contains one dimethyl 4-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate molecule and two water molecules. The dihydropyridine (N1/C1–C5) ring adopts a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.3369 (12) Å, θ = 107.1 (2)°, and [var phi] = 1.5 (2)°. The central pyrazole ring (N2/N3/C6–C8) is essentially planar [maximum deviation of 0.003 (1) Å at atoms N2 and C8] and makes dihedral angles of 50.42 (6)° and 26.44 (6)°, respectively, with the benzene rings (C9–C14 & C15–C20). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Fun et al., 2011, 2012).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N1—H1N1···O2W, O1W—H1W1···O2W, O1W—H2W1···N3, O2W—H1W2···O3, O2W—H2W2···O1W and C20—H20A···O1W hydrogen bonds (Table 1) into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroids of the pyrazole ring (N2/N3/C6–C8; Cg1) and benzene ring (C15–C20; Cg2).

Experimental

3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (0.20 g, 0.0007 mol), acetyl acetone (0.17 g, 0.0015 mol) and ammonium acetate (0.064 g, 0.00084 mol) in ethanol (10 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol. Yield: 0.28 g, 82.3%; M.p. 393–395 K. (Trivedi et al., 2011).

Refinement

All N and O bound H atoms were located from the difference map and were refined freely [N–H = 0.904 (18) Å and O–H = 0.87 (3)–0.98 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C–H = 0.9500, 0.9800 and 1.0000 Å). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C27H27N3O5·2H2OF(000) = 1080
Mr = 509.55Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7658 reflections
a = 14.1279 (9) Åθ = 2.3–30.0°
b = 11.6313 (7) ŵ = 0.10 mm1
c = 15.3780 (9) ÅT = 100 K
β = 93.358 (1)°Block, yellow
V = 2522.7 (3) Å30.34 × 0.17 × 0.14 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer7347 independent reflections
Radiation source: fine-focus sealed tube5683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
[var phi] and ω scansθmax = 30.1°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −19→19
Tmin = 0.968, Tmax = 0.987k = −16→13
28375 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0713P)2 + 0.6924P] where P = (Fo2 + 2Fc2)/3
7347 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.00103 (7)0.62548 (9)0.37770 (6)0.0226 (2)
O1W0.41969 (8)0.86761 (10)−0.00494 (6)0.0234 (2)
O20.03130 (6)0.66323 (8)0.23892 (6)0.01912 (19)
O2W0.38758 (7)0.38977 (8)0.53450 (6)0.0195 (2)
O30.28443 (7)0.24426 (8)0.14770 (6)0.0219 (2)
O40.18314 (7)0.37519 (8)0.08778 (6)0.0200 (2)
O50.08804 (7)0.56032 (9)−0.20791 (6)0.0225 (2)
N10.25743 (8)0.42928 (9)0.38442 (6)0.0156 (2)
N20.34896 (7)0.74941 (9)0.22034 (6)0.01294 (19)
N30.32317 (7)0.74721 (9)0.13320 (6)0.0136 (2)
C10.13336 (8)0.53784 (10)0.31548 (7)0.0133 (2)
C20.17983 (8)0.50147 (11)0.39019 (7)0.0144 (2)
C30.27622 (8)0.36991 (10)0.30988 (7)0.0141 (2)
C40.23111 (8)0.40222 (10)0.23297 (7)0.0129 (2)
C50.17563 (8)0.51489 (10)0.22856 (7)0.0120 (2)
H5A0.12310.50840.18240.014*
C60.23963 (8)0.61354 (10)0.20620 (7)0.0123 (2)
C70.25677 (8)0.66432 (10)0.12467 (7)0.0125 (2)
C80.29982 (8)0.67097 (10)0.26530 (7)0.0132 (2)
H8A0.30580.65800.32640.016*
C90.21375 (9)0.63618 (10)0.03755 (7)0.0141 (2)
C100.11507 (9)0.62914 (11)0.02224 (8)0.0162 (2)
H10A0.07510.64200.06880.019*
C110.07515 (9)0.60366 (12)−0.05989 (8)0.0182 (2)
H11A0.00820.5994−0.06940.022*
C120.13333 (9)0.58421 (11)−0.12869 (7)0.0172 (2)
C130.23124 (9)0.58855 (12)−0.11424 (8)0.0186 (3)
H13A0.27120.5736−0.16060.022*
C140.27062 (9)0.61488 (11)−0.03141 (8)0.0167 (2)
H14A0.33760.6183−0.02190.020*
C150.41077 (8)0.83539 (10)0.25672 (7)0.0134 (2)
C160.42022 (9)0.93974 (11)0.21407 (8)0.0175 (2)
H16A0.38770.95290.15910.021*
C170.47758 (10)1.02438 (12)0.25260 (9)0.0223 (3)
H17A0.48491.09550.22340.027*
C180.52447 (10)1.00658 (12)0.33343 (9)0.0226 (3)
H18A0.56311.06540.35960.027*
C190.51448 (9)0.90238 (12)0.37554 (8)0.0190 (3)
H19A0.54640.88990.43080.023*
C200.45806 (9)0.81588 (11)0.33746 (7)0.0155 (2)
H20A0.45180.74420.36620.019*
C210.23800 (9)0.33188 (11)0.15483 (7)0.0150 (2)
C220.17954 (12)0.30966 (13)0.00848 (9)0.0288 (3)
H22A0.14120.3508−0.03670.043*
H22B0.15100.23440.01860.043*
H22C0.24390.2991−0.01060.043*
C230.04876 (9)0.61105 (11)0.31701 (8)0.0158 (2)
C24−0.05368 (10)0.73192 (13)0.23212 (9)0.0244 (3)
H24A−0.05860.77050.17540.037*
H24B−0.05120.78970.27860.037*
H24C−0.10910.68230.23780.037*
C250.34522 (9)0.27246 (12)0.32367 (8)0.0195 (3)
H25A0.39370.27750.28070.029*
H25B0.31140.19920.31670.029*
H25C0.37560.27720.38250.029*
C260.15698 (10)0.53149 (12)0.48159 (8)0.0204 (3)
H26A0.13510.61140.48350.031*
H26B0.21390.52240.52050.031*
H26C0.10700.48030.50040.031*
C270.14331 (11)0.56823 (14)−0.28286 (8)0.0267 (3)
H27A0.10170.5606−0.33580.040*
H27B0.19070.5066−0.28100.040*
H27C0.17540.6429−0.28300.040*
H1N10.2957 (13)0.4137 (15)0.4321 (12)0.027 (4)*
H2W10.3944 (16)0.828 (2)0.0380 (14)0.047 (6)*
H2W20.4530 (18)0.3690 (19)0.5247 (14)0.052 (6)*
H1W10.4089 (18)0.939 (2)0.0070 (16)0.063 (7)*
H1W20.3581 (17)0.345 (2)0.5726 (15)0.053 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0199 (5)0.0257 (5)0.0230 (4)0.0020 (4)0.0086 (4)−0.0036 (4)
O1W0.0300 (5)0.0186 (5)0.0229 (5)−0.0027 (4)0.0110 (4)−0.0019 (4)
O20.0167 (4)0.0197 (5)0.0212 (4)0.0060 (4)0.0028 (3)0.0014 (3)
O2W0.0218 (5)0.0177 (5)0.0190 (4)−0.0011 (4)0.0007 (3)0.0042 (3)
O30.0258 (5)0.0186 (5)0.0216 (4)0.0060 (4)0.0035 (4)−0.0049 (3)
O40.0297 (5)0.0170 (5)0.0133 (4)0.0042 (4)0.0004 (3)−0.0036 (3)
O50.0245 (5)0.0303 (5)0.0126 (4)−0.0096 (4)−0.0004 (3)−0.0005 (3)
N10.0166 (5)0.0170 (5)0.0132 (4)0.0014 (4)0.0010 (4)0.0005 (4)
N20.0147 (5)0.0121 (5)0.0119 (4)−0.0009 (4)0.0005 (3)0.0001 (3)
N30.0153 (5)0.0141 (5)0.0115 (4)−0.0002 (4)0.0010 (3)0.0005 (3)
C10.0135 (5)0.0126 (5)0.0142 (5)−0.0020 (4)0.0048 (4)−0.0015 (4)
C20.0155 (5)0.0134 (6)0.0146 (5)−0.0026 (4)0.0044 (4)−0.0006 (4)
C30.0140 (5)0.0124 (6)0.0162 (5)−0.0012 (4)0.0033 (4)0.0000 (4)
C40.0130 (5)0.0114 (5)0.0147 (5)−0.0010 (4)0.0035 (4)−0.0011 (4)
C50.0123 (5)0.0117 (5)0.0123 (5)−0.0005 (4)0.0022 (4)−0.0001 (4)
C60.0131 (5)0.0114 (5)0.0126 (5)0.0008 (4)0.0023 (4)0.0000 (4)
C70.0128 (5)0.0113 (5)0.0134 (5)0.0008 (4)0.0022 (4)0.0001 (4)
C80.0150 (5)0.0119 (5)0.0130 (5)−0.0005 (4)0.0025 (4)0.0004 (4)
C90.0165 (5)0.0129 (6)0.0130 (5)−0.0013 (4)0.0009 (4)0.0016 (4)
C100.0154 (6)0.0186 (6)0.0148 (5)0.0006 (5)0.0027 (4)0.0015 (4)
C110.0164 (6)0.0206 (6)0.0175 (5)−0.0022 (5)0.0000 (4)0.0016 (4)
C120.0208 (6)0.0173 (6)0.0133 (5)−0.0050 (5)0.0002 (4)0.0010 (4)
C130.0196 (6)0.0229 (7)0.0138 (5)−0.0044 (5)0.0044 (4)−0.0016 (4)
C140.0150 (5)0.0196 (6)0.0155 (5)−0.0034 (5)0.0026 (4)0.0003 (4)
C150.0126 (5)0.0124 (6)0.0153 (5)−0.0008 (4)0.0030 (4)−0.0016 (4)
C160.0205 (6)0.0156 (6)0.0166 (5)−0.0027 (5)0.0027 (4)0.0014 (4)
C170.0265 (7)0.0173 (6)0.0235 (6)−0.0076 (5)0.0037 (5)0.0009 (5)
C180.0218 (6)0.0218 (7)0.0243 (6)−0.0091 (5)0.0023 (5)−0.0043 (5)
C190.0155 (6)0.0227 (7)0.0187 (5)−0.0025 (5)0.0005 (4)−0.0021 (5)
C200.0147 (5)0.0151 (6)0.0168 (5)−0.0001 (4)0.0020 (4)−0.0001 (4)
C210.0152 (5)0.0141 (6)0.0161 (5)−0.0024 (4)0.0042 (4)−0.0006 (4)
C220.0461 (9)0.0240 (7)0.0158 (6)0.0082 (6)−0.0015 (5)−0.0069 (5)
C230.0149 (5)0.0143 (6)0.0183 (5)−0.0019 (4)0.0033 (4)−0.0018 (4)
C240.0187 (6)0.0235 (7)0.0307 (7)0.0075 (5)−0.0007 (5)−0.0011 (5)
C250.0203 (6)0.0180 (6)0.0203 (6)0.0050 (5)0.0023 (4)0.0015 (4)
C260.0243 (6)0.0227 (7)0.0146 (5)0.0020 (5)0.0048 (4)−0.0013 (4)
C270.0315 (7)0.0350 (8)0.0139 (5)−0.0139 (6)0.0034 (5)−0.0020 (5)

Geometric parameters (Å, º)

O1—C231.2129 (15)C10—C111.3848 (16)
O1W—H2W10.89 (2)C10—H10A0.9500
O1W—H1W10.87 (3)C11—C121.3957 (18)
O2—C231.3553 (15)C11—H11A0.9500
O2—C241.4408 (15)C12—C131.3890 (18)
O2W—H2W20.98 (2)C13—C141.3939 (16)
O2W—H1W20.90 (3)C13—H13A0.9500
O3—C211.2204 (16)C14—H14A0.9500
O4—C211.3507 (14)C15—C161.3897 (17)
O4—C221.4364 (15)C15—C201.3936 (15)
O5—C121.3709 (14)C16—C171.3859 (18)
O5—C271.4324 (16)C16—H16A0.9500
N1—C31.3773 (15)C17—C181.3894 (18)
N1—C21.3879 (16)C17—H17A0.9500
N1—H1N10.904 (18)C18—C191.3853 (19)
N2—C81.3596 (15)C18—H18A0.9500
N2—N31.3683 (13)C19—C201.3915 (17)
N2—C151.4207 (15)C19—H19A0.9500
N3—C71.3463 (15)C20—H20A0.9500
C1—C21.3570 (15)C22—H22A0.9800
C1—C231.4688 (17)C22—H22B0.9800
C1—C51.5192 (15)C22—H22C0.9800
C2—C261.5015 (16)C24—H24A0.9800
C3—C41.3630 (15)C24—H24B0.9800
C3—C251.5018 (17)C24—H24C0.9800
C4—C211.4616 (16)C25—H25A0.9800
C4—C51.5266 (16)C25—H25B0.9800
C5—C61.5129 (16)C25—H25C0.9800
C5—H5A1.0000C26—H26A0.9800
C6—C81.3801 (15)C26—H26B0.9800
C6—C71.4194 (15)C26—H26C0.9800
C7—C91.4751 (15)C27—H27A0.9800
C8—H8A0.9500C27—H27B0.9800
C9—C141.3897 (17)C27—H27C0.9800
C9—C101.4026 (17)
H2W1—O1W—H1W1105 (2)C13—C14—H14A119.4
C23—O2—C24114.85 (10)C16—C15—C20120.56 (11)
H2W2—O2W—H1W2116 (2)C16—C15—N2120.19 (10)
C21—O4—C22116.13 (10)C20—C15—N2119.19 (11)
C12—O5—C27117.00 (10)C17—C16—C15119.25 (11)
C3—N1—C2123.24 (10)C17—C16—H16A120.4
C3—N1—H1N1116.1 (11)C15—C16—H16A120.4
C2—N1—H1N1120.4 (11)C16—C17—C18120.85 (12)
C8—N2—N3111.77 (9)C16—C17—H17A119.6
C8—N2—C15126.34 (10)C18—C17—H17A119.6
N3—N2—C15121.40 (10)C19—C18—C17119.50 (12)
C7—N3—N2104.64 (9)C19—C18—H18A120.3
C2—C1—C23121.39 (11)C17—C18—H18A120.3
C2—C1—C5119.64 (10)C18—C19—C20120.49 (11)
C23—C1—C5118.56 (10)C18—C19—H19A119.8
C1—C2—N1118.63 (10)C20—C19—H19A119.8
C1—C2—C26126.88 (11)C19—C20—C15119.35 (12)
N1—C2—C26114.48 (10)C19—C20—H20A120.3
C4—C3—N1118.73 (11)C15—C20—H20A120.3
C4—C3—C25126.67 (11)O3—C21—O4122.02 (11)
N1—C3—C25114.59 (10)O3—C21—C4127.11 (11)
C3—C4—C21120.58 (11)O4—C21—C4110.86 (10)
C3—C4—C5119.21 (10)O4—C22—H22A109.5
C21—C4—C5120.18 (10)O4—C22—H22B109.5
C6—C5—C1109.73 (9)H22A—C22—H22B109.5
C6—C5—C4110.43 (9)O4—C22—H22C109.5
C1—C5—C4109.81 (9)H22A—C22—H22C109.5
C6—C5—H5A108.9H22B—C22—H22C109.5
C1—C5—H5A108.9O1—C23—O2122.43 (11)
C4—C5—H5A108.9O1—C23—C1127.00 (11)
C8—C6—C7104.47 (10)O2—C23—C1110.58 (10)
C8—C6—C5124.81 (10)O2—C24—H24A109.5
C7—C6—C5130.65 (10)O2—C24—H24B109.5
N3—C7—C6111.46 (10)H24A—C24—H24B109.5
N3—C7—C9119.67 (10)O2—C24—H24C109.5
C6—C7—C9128.86 (11)H24A—C24—H24C109.5
N2—C8—C6107.65 (10)H24B—C24—H24C109.5
N2—C8—H8A126.2C3—C25—H25A109.5
C6—C8—H8A126.2C3—C25—H25B109.5
C14—C9—C10118.35 (10)H25A—C25—H25B109.5
C14—C9—C7120.45 (11)C3—C25—H25C109.5
C10—C9—C7121.20 (11)H25A—C25—H25C109.5
C11—C10—C9120.89 (11)H25B—C25—H25C109.5
C11—C10—H10A119.6C2—C26—H26A109.5
C9—C10—H10A119.6C2—C26—H26B109.5
C10—C11—C12119.97 (11)H26A—C26—H26B109.5
C10—C11—H11A120.0C2—C26—H26C109.5
C12—C11—H11A120.0H26A—C26—H26C109.5
O5—C12—C13123.92 (11)H26B—C26—H26C109.5
O5—C12—C11116.20 (11)O5—C27—H27A109.5
C13—C12—C11119.87 (11)O5—C27—H27B109.5
C12—C13—C14119.64 (11)H27A—C27—H27B109.5
C12—C13—H13A120.2O5—C27—H27C109.5
C14—C13—H13A120.2H27A—C27—H27C109.5
C9—C14—C13121.26 (11)H27B—C27—H27C109.5
C9—C14—H14A119.4
C8—N2—N3—C7−0.45 (13)N3—C7—C9—C10−130.42 (13)
C15—N2—N3—C7−172.90 (10)C6—C7—C9—C1050.89 (18)
C23—C1—C2—N1177.85 (11)C14—C9—C10—C11−1.15 (19)
C5—C1—C2—N1−9.57 (17)C7—C9—C10—C11179.43 (12)
C23—C1—C2—C26−2.5 (2)C9—C10—C11—C120.2 (2)
C5—C1—C2—C26170.03 (12)C27—O5—C12—C13−15.73 (19)
C3—N1—C2—C1−16.56 (18)C27—O5—C12—C11164.95 (12)
C3—N1—C2—C26163.79 (11)C10—C11—C12—O5−179.56 (12)
C2—N1—C3—C415.78 (18)C10—C11—C12—C131.1 (2)
C2—N1—C3—C25−163.19 (11)O5—C12—C13—C14179.27 (12)
N1—C3—C4—C21−171.01 (11)C11—C12—C13—C14−1.4 (2)
C25—C3—C4—C217.82 (19)C10—C9—C14—C130.80 (19)
N1—C3—C4—C510.87 (17)C7—C9—C14—C13−179.78 (12)
C25—C3—C4—C5−170.29 (11)C12—C13—C14—C90.5 (2)
C2—C1—C5—C6−89.71 (13)C8—N2—C15—C16−148.56 (12)
C23—C1—C5—C683.08 (12)N3—N2—C15—C1622.74 (17)
C2—C1—C5—C431.85 (15)C8—N2—C15—C2028.37 (18)
C23—C1—C5—C4−155.36 (10)N3—N2—C15—C20−160.34 (11)
C3—C4—C5—C688.64 (13)C20—C15—C16—C170.22 (19)
C21—C4—C5—C6−89.49 (12)N2—C15—C16—C17177.11 (12)
C3—C4—C5—C1−32.51 (14)C15—C16—C17—C18−0.8 (2)
C21—C4—C5—C1149.37 (11)C16—C17—C18—C190.7 (2)
C1—C5—C6—C839.26 (15)C17—C18—C19—C200.0 (2)
C4—C5—C6—C8−81.93 (14)C18—C19—C20—C15−0.63 (19)
C1—C5—C6—C7−144.34 (12)C16—C15—C20—C190.50 (18)
C4—C5—C6—C794.47 (14)N2—C15—C20—C19−176.42 (11)
N2—N3—C7—C60.19 (13)C22—O4—C21—O32.43 (18)
N2—N3—C7—C9−178.72 (10)C22—O4—C21—C4−176.47 (12)
C8—C6—C7—N30.11 (14)C3—C4—C21—O3−3.0 (2)
C5—C6—C7—N3−176.84 (11)C5—C4—C21—O3175.14 (12)
C8—C6—C7—C9178.90 (12)C3—C4—C21—O4175.88 (11)
C5—C6—C7—C91.9 (2)C5—C4—C21—O4−6.03 (15)
N3—N2—C8—C60.53 (14)C24—O2—C23—O1−3.27 (17)
C15—N2—C8—C6172.54 (11)C24—O2—C23—C1176.54 (10)
C7—C6—C8—N2−0.38 (13)C2—C1—C23—O1−18.1 (2)
C5—C6—C8—N2176.81 (11)C5—C1—C23—O1169.29 (12)
N3—C7—C9—C1450.18 (17)C2—C1—C23—O2162.14 (11)
C6—C7—C9—C14−128.52 (14)C5—C1—C23—O2−10.52 (15)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the pyrazole (N2/N3/C6–C8) and benzene (C15–C20) rings, respectively.

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2W0.904 (18)2.001 (18)2.9020 (14)175.2 (15)
O1W—H2W1···N30.90 (2)2.05 (2)2.9449 (14)174 (2)
O2W—H2W2···O1Wi0.98 (3)1.84 (3)2.7986 (15)166 (2)
O2W—H1W2···O3ii0.90 (3)1.91 (3)2.8074 (14)174 (2)
O1W—H1W1···O2Wiii0.87 (3)2.06 (3)2.9274 (15)178 (2)
C20—H20A···O1Wiv0.952.443.2980 (16)151
C13—H13A···Cg2v0.952.903.6957 (14)142
C18—H18A···Cg1vi0.952.633.3682 (15)135
C25—H25A···Cg2i0.982.873.7231 (14)146
C27—H27C···Cg1v0.982.623.5720 (17)164

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2; (v) x, −y+1/2, z−3/2; (vi) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5244).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). SADABS, APEX2 and SAINTBruker AXS Inc., Madison, Wisconsin, USA.
  • Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417–o1418. [PMC free article] [PubMed]
  • Fun, H.-K., Ooi, C. W., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o892–o893. [PMC free article] [PubMed]
  • Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597. [PubMed]
  • Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.
  • Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trivedi, A., Dodiya, D., Dholariya, B., Kataria, V., Bhuva, V. & Shah, V. (2011). Chem. Biol. Drug Des. 78, 881–886. [PubMed]
  • Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597. [PubMed]
  • Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography