PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 July 1; 68(Pt 7): o2193.
Published online 2012 June 23. doi:  10.1107/S1600536812027328
PMCID: PMC3393993

(1Z)-1-[(2E)-3-(4-Bromo­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-yl­idene]-2-(2,4-dinitro­phen­yl)hydrazine

Abstract

In the title mol­ecule, C21H14BrFN4O4, the mean planes of the two nitro groups form dihedral angles of 3.1 (2) and 7.1 (5)° with the benzene ring to which they are attached. The dinitro-substituted ring forms dihedral angles of 8.6 (2) and 71.9 (2)° with the bromo- and fluoro-substituted benzene rings, respectively. The dihedral angle between the bromo- and fluoro-substituted benzene rings is 80.6 (2)°. There is an intra­molecular N—H(...)O hydrogen bond. In the crystal, pairs of weak C—H(...)O hydrogen bonds form inversion dimers. In addition, π–π stacking inter­actions between the bromo- and dinitro-substituted rings [centroid–centroid separation = 3.768 (2) Å] are observed.

Related literature  

For applications of hydrazone derivatives, see: Rollas et al. (2007 [triangle]); Singh et al. (1982 [triangle]). For the synthesis, see: Jasinski et al. (2010 [triangle]). For a related structure, see: Yin et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o2193-scheme1.jpg

Experimental  

Crystal data  

  • C21H14BrFN4O4
  • M r = 485.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o2193-efi1.jpg
  • a = 15.0738 (12) Å
  • b = 10.6511 (5) Å
  • c = 14.3353 (8) Å
  • β = 116.010 (9)°
  • V = 2068.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.03 mm−1
  • T = 293 K
  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.889, T max = 1.000
  • 15619 measured reflections
  • 4058 independent reflections
  • 2232 reflections with I > 2σ(I)
  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.141
  • S = 1.01
  • 4058 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027328/lh5491sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027328/lh5491Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812027328/lh5491Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RK acknowledges the Department of Science & Technology for access to single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP–DRS–Phase 1 programme. MS thanks the DST, New Delhi, for providing financial help for this research work through the INSPIRE Research Fellowship scheme.

supplementary crystallographic information

Comment

Hydrazone derivatives are important biologically active compounds which have received attention from the synthetic community (Rollas et al., 2007). Hydrazone derivatives are also used as analytical reagents (Singh et al., 1982). The crystal structure of 1-(but-2-enylidene)-2-(2-nitrophenyl)hydrazine has been reported (Yin et al., 2009). In order to prepare a pyrazoline derivative, (2E)-3-(4-bromophenyl) -1-(4-fluorophenyl)prop-2-en-1-one was reacted with 2,4-dinitrophenyl hydrazine as for the method of Jasinski et al. (2010). But, instead of a pyrazoline derivative a 2,4-dintrophenylhydrazone compound (I) was obtained and its crystal structure is reported herein.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those which are related in a reported structure (Yin et al., 2009). The two nitro groups form dihedral angles of 3.1 (2) and 7.1 (5)° with the C16-C21 ring. The dinitro substituted ring (C16-C21) forms dihedral angles of 8.6 (2)° and 71.9 (2) ° with bromo (C1-C6) and fluoro (C10-C15) substituted benzene rings, respectively. The dihedral angle between the bromo and fluoro substituted benzene rings is 80.6 (2)°. There is an intramolecular N—H···O hydrogen bond and in the crystal, pairs of weak C—H···O hydrogen bonds form inversion dimers (Table 1, Fig. 2). In addition, π–π stacking interactions between the bromophenyl ring and dinitro phenyl ring are observed [centroid separation = 3.768 (2) Å, interplanar spacing =3.410 Å, centroid shift = 1.60 Å, Symmetry = x, 1 + y, z].

Experimental

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and 2,4-dinitrophenylhydrazine (1.98 g, 0.01 mol) in 50 ml of glacial acetic acid was refluxed for 6 hrs. The reaction mixture was cooled to produce red crystals (m.p. 414–416 K). X-ray quality crystals were obtained by slow evaporation of an acetic acid solution of (I) at room temperature.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with N—H distance of 0.86 Å and C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.
Fig. 2.
The packing arrangement of molecules viewed along the b axis. The broken lines show intermolecular C—H···O interactions.

Crystal data

C21H14BrFN4O4F(000) = 976
Mr = 485.27Dx = 1.558 Mg m3
Monoclinic, P21/cMelting point = 416–414 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.0738 (12) ÅCell parameters from 3762 reflections
b = 10.6511 (5) Åθ = 3.6–29.0°
c = 14.3353 (8) ŵ = 2.03 mm1
β = 116.010 (9)°T = 293 K
V = 2068.5 (2) Å3Plate, red
Z = 40.3 × 0.2 × 0.1 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer4058 independent reflections
Radiation source: fine-focus sealed tube2232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = −18→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = −13→13
Tmin = 0.889, Tmax = 1.000l = −17→17
15619 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0533P)2 + 0.8232P] where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.10475 (5)1.47051 (5)0.45912 (4)0.1080 (3)
F10.0359 (3)0.6564 (3)−0.06938 (19)0.1523 (14)
N20.3279 (2)0.5513 (3)0.3799 (2)0.0541 (7)
H210.30300.53950.31390.065*
O10.3072 (2)0.3913 (3)0.23628 (19)0.0930 (10)
O20.3459 (3)0.1980 (3)0.2728 (2)0.0946 (10)
O30.4846 (3)0.0425 (4)0.6152 (3)0.1316 (16)
O40.5243 (3)0.1687 (4)0.7432 (3)0.1200 (13)
N30.3419 (3)0.3052 (4)0.2993 (2)0.0700 (9)
N10.3238 (2)0.6688 (3)0.4176 (2)0.0581 (8)
N40.4898 (3)0.1471 (5)0.6501 (4)0.0932 (12)
C10.1384 (3)1.3158 (4)0.4190 (3)0.0624 (10)
C20.1915 (3)1.2297 (4)0.4951 (3)0.0620 (10)
H20.21221.24920.56480.074*
C30.2135 (3)1.1146 (4)0.4666 (3)0.0615 (10)
H30.24901.05590.51730.074*
C40.1829 (3)1.0855 (3)0.3623 (3)0.0574 (9)
C50.1301 (3)1.1750 (4)0.2885 (3)0.0655 (10)
H50.10901.15640.21860.079*
C60.1080 (3)1.2911 (4)0.3162 (3)0.0692 (11)
H60.07321.35070.26600.083*
C70.2021 (3)0.9630 (3)0.3285 (3)0.0621 (10)
H70.16720.94510.25810.074*
C80.2633 (3)0.8747 (3)0.3863 (3)0.0613 (10)
H80.30460.89360.45530.074*
C90.2700 (3)0.7506 (3)0.3489 (3)0.0560 (9)
C100.2108 (3)0.7207 (3)0.2368 (3)0.0523 (9)
C110.2375 (4)0.7628 (4)0.1622 (3)0.0780 (12)
H110.29580.80800.18160.094*
C120.1792 (5)0.7388 (5)0.0598 (4)0.0965 (17)
H120.19810.76590.00950.116*
C130.0950 (5)0.6765 (5)0.0324 (3)0.0895 (16)
C140.0659 (3)0.6315 (5)0.1030 (4)0.0905 (14)
H140.00740.58640.08220.109*
C150.1253 (3)0.6545 (4)0.2068 (3)0.0695 (11)
H150.10680.62460.25660.083*
C160.3702 (2)0.4545 (3)0.4448 (2)0.0495 (8)
C170.4066 (3)0.4703 (4)0.5530 (2)0.0565 (9)
H170.40310.54880.57970.068*
C180.4465 (3)0.3722 (4)0.6188 (3)0.0643 (11)
H180.47050.38400.69000.077*
C190.4517 (3)0.2545 (4)0.5802 (3)0.0614 (10)
C200.4187 (3)0.2341 (4)0.4765 (3)0.0614 (10)
H200.42310.15490.45160.074*
C210.3786 (2)0.3336 (4)0.4092 (2)0.0537 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1532 (6)0.0716 (4)0.1080 (4)0.0292 (3)0.0652 (4)−0.0073 (3)
F10.197 (3)0.147 (3)0.0548 (16)0.047 (3)0.0025 (18)−0.0091 (17)
N20.0666 (19)0.0520 (18)0.0393 (15)0.0087 (15)0.0193 (14)0.0017 (14)
O10.145 (3)0.077 (2)0.0458 (15)0.027 (2)0.0320 (17)0.0036 (16)
O20.142 (3)0.073 (2)0.079 (2)0.022 (2)0.0581 (19)−0.0100 (16)
O30.181 (4)0.087 (3)0.122 (3)0.061 (3)0.062 (3)0.047 (2)
O40.114 (3)0.140 (3)0.074 (2)0.031 (2)0.0118 (19)0.046 (2)
N30.085 (2)0.072 (2)0.058 (2)0.015 (2)0.0360 (18)−0.0049 (19)
N10.0656 (19)0.0526 (18)0.0520 (17)0.0019 (16)0.0219 (15)−0.0028 (16)
N40.084 (3)0.099 (3)0.086 (3)0.026 (3)0.028 (2)0.040 (3)
C10.072 (3)0.051 (2)0.068 (2)0.001 (2)0.034 (2)−0.003 (2)
C20.073 (3)0.060 (2)0.050 (2)−0.002 (2)0.025 (2)−0.0078 (19)
C30.070 (3)0.054 (2)0.054 (2)0.002 (2)0.0223 (19)0.0022 (19)
C40.066 (2)0.049 (2)0.054 (2)−0.0019 (19)0.0235 (19)−0.0034 (18)
C50.084 (3)0.055 (2)0.051 (2)−0.001 (2)0.024 (2)−0.0016 (19)
C60.081 (3)0.062 (3)0.057 (2)0.010 (2)0.023 (2)0.005 (2)
C70.079 (3)0.051 (2)0.055 (2)−0.004 (2)0.028 (2)−0.0027 (19)
C80.072 (3)0.050 (2)0.056 (2)−0.004 (2)0.022 (2)−0.0055 (19)
C90.062 (2)0.051 (2)0.057 (2)−0.0016 (19)0.0279 (19)0.0011 (19)
C100.066 (2)0.0431 (19)0.050 (2)0.0094 (18)0.0277 (19)0.0034 (16)
C110.102 (3)0.075 (3)0.069 (3)−0.005 (3)0.049 (3)0.003 (2)
C120.165 (6)0.078 (3)0.064 (3)0.017 (4)0.066 (4)0.011 (3)
C130.120 (4)0.080 (3)0.042 (3)0.036 (3)0.011 (3)−0.003 (2)
C140.073 (3)0.096 (4)0.081 (3)0.009 (3)0.013 (3)−0.014 (3)
C150.072 (3)0.077 (3)0.058 (2)0.003 (2)0.026 (2)0.001 (2)
C160.045 (2)0.057 (2)0.0428 (19)0.0024 (17)0.0162 (16)0.0023 (17)
C170.058 (2)0.061 (2)0.046 (2)−0.0004 (19)0.0180 (18)−0.0017 (18)
C180.051 (2)0.091 (3)0.0410 (19)−0.002 (2)0.0110 (17)0.006 (2)
C190.050 (2)0.071 (3)0.058 (2)0.013 (2)0.0180 (19)0.019 (2)
C200.058 (2)0.061 (2)0.065 (2)0.0100 (19)0.0274 (19)0.007 (2)
C210.054 (2)0.062 (2)0.047 (2)0.0077 (19)0.0236 (17)0.0017 (18)

Geometric parameters (Å, º)

Br1—C11.886 (4)C7—H70.9300
F1—C131.352 (5)C8—C91.447 (5)
N2—C161.347 (4)C8—H80.9300
N2—N11.376 (4)C9—C101.491 (5)
N2—H210.8600C10—C151.363 (5)
O1—N31.231 (4)C10—C111.372 (5)
O2—N31.213 (4)C11—C121.365 (6)
O3—N41.209 (5)C11—H110.9300
O4—N41.223 (5)C12—C131.330 (7)
N3—C211.455 (4)C12—H120.9300
N1—C91.298 (4)C13—C141.356 (7)
N4—C191.463 (5)C14—C151.381 (5)
C1—C61.363 (5)C14—H140.9300
C1—C21.381 (5)C15—H150.9300
C2—C31.378 (5)C16—C211.411 (5)
C2—H20.9300C16—C171.411 (4)
C3—C41.393 (5)C17—C181.359 (5)
C3—H30.9300C17—H170.9300
C4—C51.386 (5)C18—C191.386 (5)
C4—C71.464 (5)C18—H180.9300
C5—C61.384 (5)C19—C201.361 (5)
C5—H50.9300C20—C211.381 (5)
C6—H60.9300C20—H200.9300
C7—C81.324 (5)
C16—N2—N1120.9 (3)C15—C10—C11118.9 (4)
C16—N2—H21119.5C15—C10—C9119.1 (3)
N1—N2—H21119.5C11—C10—C9121.9 (4)
O2—N3—O1122.3 (3)C12—C11—C10120.4 (5)
O2—N3—C21119.1 (3)C12—C11—H11119.8
O1—N3—C21118.6 (3)C10—C11—H11119.8
C9—N1—N2115.6 (3)C13—C12—C11119.6 (4)
O3—N4—O4123.0 (4)C13—C12—H12120.2
O3—N4—C19120.1 (4)C11—C12—H12120.2
O4—N4—C19116.9 (5)C12—C13—F1119.3 (6)
C6—C1—C2122.0 (4)C12—C13—C14122.3 (4)
C6—C1—Br1119.4 (3)F1—C13—C14118.3 (6)
C2—C1—Br1118.6 (3)C13—C14—C15118.2 (5)
C3—C2—C1119.2 (3)C13—C14—H14120.9
C3—C2—H2120.4C15—C14—H14120.9
C1—C2—H2120.4C10—C15—C14120.6 (4)
C2—C3—C4120.5 (3)C10—C15—H15119.7
C2—C3—H3119.8C14—C15—H15119.7
C4—C3—H3119.8N2—C16—C21122.7 (3)
C5—C4—C3118.4 (3)N2—C16—C17120.4 (3)
C5—C4—C7119.4 (3)C21—C16—C17116.9 (3)
C3—C4—C7122.2 (3)C18—C17—C16120.8 (4)
C6—C5—C4121.7 (3)C18—C17—H17119.6
C6—C5—H5119.2C16—C17—H17119.6
C4—C5—H5119.2C17—C18—C19120.3 (3)
C1—C6—C5118.3 (4)C17—C18—H18119.9
C1—C6—H6120.9C19—C18—H18119.9
C5—C6—H6120.9C20—C19—C18121.5 (3)
C8—C7—C4127.6 (3)C20—C19—N4118.0 (4)
C8—C7—H7116.2C18—C19—N4120.5 (4)
C4—C7—H7116.2C19—C20—C21118.6 (4)
C7—C8—C9124.0 (3)C19—C20—H20120.7
C7—C8—H8118.0C21—C20—H20120.7
C9—C8—H8118.0C20—C21—C16122.0 (3)
N1—C9—C8116.9 (3)C20—C21—N3116.1 (3)
N1—C9—C10123.7 (3)C16—C21—N3121.9 (3)
C8—C9—C10119.3 (3)
C16—N2—N1—C9−171.1 (3)F1—C13—C14—C15−178.6 (4)
C6—C1—C2—C3−0.8 (6)C11—C10—C15—C14−0.8 (6)
Br1—C1—C2—C3177.7 (3)C9—C10—C15—C14176.3 (4)
C1—C2—C3—C40.3 (6)C13—C14—C15—C100.0 (6)
C2—C3—C4—C50.0 (6)N1—N2—C16—C21−178.0 (3)
C2—C3—C4—C7−178.1 (4)N1—N2—C16—C173.5 (5)
C3—C4—C5—C60.3 (6)N2—C16—C17—C18177.9 (3)
C7—C4—C5—C6178.4 (4)C21—C16—C17—C18−0.7 (5)
C2—C1—C6—C51.1 (6)C16—C17—C18—C19−0.3 (5)
Br1—C1—C6—C5−177.4 (3)C17—C18—C19—C201.0 (6)
C4—C5—C6—C1−0.9 (6)C17—C18—C19—N4−176.7 (3)
C5—C4—C7—C8168.4 (4)O3—N4—C19—C20−5.6 (6)
C3—C4—C7—C8−13.6 (6)O4—N4—C19—C20175.9 (4)
C4—C7—C8—C9172.9 (4)O3—N4—C19—C18172.3 (5)
N2—N1—C9—C8179.3 (3)O4—N4—C19—C18−6.3 (6)
N2—N1—C9—C103.5 (5)C18—C19—C20—C21−0.6 (6)
C7—C8—C9—N1−171.1 (4)N4—C19—C20—C21177.2 (3)
C7—C8—C9—C104.9 (6)C19—C20—C21—C16−0.5 (5)
N1—C9—C10—C1575.0 (5)C19—C20—C21—N3−178.2 (3)
C8—C9—C10—C15−100.7 (4)N2—C16—C21—C20−177.4 (3)
N1—C9—C10—C11−108.0 (4)C17—C16—C21—C201.1 (5)
C8—C9—C10—C1176.3 (5)N2—C16—C21—N30.2 (5)
C15—C10—C11—C120.1 (6)C17—C16—C21—N3178.7 (3)
C9—C10—C11—C12−176.9 (4)O2—N3—C21—C201.9 (5)
C10—C11—C12—C131.4 (7)O1—N3—C21—C20−178.6 (3)
C11—C12—C13—F1177.9 (4)O2—N3—C21—C16−175.8 (4)
C11—C12—C13—C14−2.3 (8)O1—N3—C21—C163.7 (5)
C12—C13—C14—C151.6 (7)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N2—H21···O10.861.952.584 (4)130
C11—H11···O4i0.932.453.316 (7)154

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5491).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949. [PMC free article] [PubMed]
  • Oxford Diffraction (2010). CrysAlis PROOxford Diffraction Ltd, Yarnton, England.
  • Rollas, S. & Güniz Küçükgüzel, S. (2007). Molecules, 12, 1910–1939. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yin, Z.-G., Qian, H.-Y., Zhu, X.-W. & Zhang, C.-X. (2009). Acta Cryst. E65, o2491. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography