PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Jul 1, 2012; 68(Pt 7): m966.
Published online Jun 23, 2012. doi:  10.1107/S1600536812027857
PMCID: PMC3393217
Redetermination of (acetonitrile-κN)dicarbon­yl(η5-cyclo­penta­dien­yl)iron(II) tetra­fluoridoborate
Theresa Kückmann,a Hans-Wolfram Lerner,a and Michael Boltea*
aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
Correspondence e-mail: bolte/at/chemie.uni-frankfurt.de
Received May 31, 2012; Accepted June 19, 2012.
Abstract
The crystal structure of the title compound, [Fe(C5H5)(CH3CN)(CO)2]BF4, of which only the coordinates of the non-H atoms of the cation have previously been reported [Fadel et al. (1979 [triangle]). Z. Anorg. Allg. Chem. 453, 98–106] has been redetermined. The FeII atom in the complex cation is coordinated by a cyclo­penta­dienyl ring, two carbonyl ligands and an acetonitrile mol­ecule displaying a three-legged piano stool structure. Three of the four F atoms of the BF4 anion are disordered over two sets of sites, with a site-occupancy factor of 0.709 (10) for the major occupied site.
Related literature  
For background to this work, see: Kückmann et al. (2005 [triangle], 2007 [triangle], 2008 [triangle], 2010 [triangle]); Lerner (2005 [triangle]); Sänger et al. (2012 [triangle]). For a previous (incomplete) structure determination of the title compound, see: Fadel et al. (1979 [triangle]). For the structure of closely related dicarbonyl-(η5-cyclo­penta­dien­yl)-(N-methyl cyanido)iron(II) tetra­fluoridoborate, see: Callan et al. (1987 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-0m966-scheme1.jpg Object name is e-68-0m966-scheme1.jpg
Crystal data  
  • [Fe(C5H5)(C2H3N)(CO)2]BF4
  • M r = 304.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0m966-efi1.jpg
  • a = 6.8842 (7) Å
  • b = 15.289 (2) Å
  • c = 11.4353 (12) Å
  • β = 95.192 (8)°
  • V = 1198.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.30 mm−1
  • T = 173 K
  • 0.33 × 0.12 × 0.12 mm
Data collection  
  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2009 [triangle]; Blessing, 1995 [triangle]) T min = 0.674, T max = 0.860
  • 6372 measured reflections
  • 2222 independent reflections
  • 1976 reflections with I > 2σ(I)
  • R int = 0.044
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.151
  • S = 1.04
  • 2222 reflections
  • 162 parameters
  • 45 restraints
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −0.87 e Å−3
Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027857/wm2643sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027857/wm2643Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
Very recently we have reported (Sänger et al., 2012) that the dimeric iron carbonyl [CpFe(CO)2]2 and the iodosilanes tBu2RSiI (R = Me, tBu) were obtained from the reaction of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (Lerner, 2005) in THF. The reaction of [CpFe(CO)2]X (X = halogen) with silyl thiolates [SSiR3]- is a method to prepare the corresponding chalcogenolato complexes. We found that the sodium thiolate Na[SSitBu3] (Kückmann et al., 2005, 2008, 2010) reacts readily with [CpFe(CO)2][BF4] in THF at room temperature to give the desired complex [CpFe(CO)2][SSitBu3] (Kückmann et al., 2007). In this article we report the crystal structure of the starting material of this approach, [CpFe(CO)2][BF4]. The title compound [CpFe(CO)2][BF4] was easily accessible from the reaction of [CpFe(CO)2]I with AgBF4 in THF. Single crystals of the acetonitrile solvate [CpFe(CO)2(NCCH3)][BF4] were obtained by recrystallization from acetonitrile.
The crystal structure of the title compound (Fig. 1), of which only the coordinates of the non-H atoms of the cation have previously been determined (Fadel et al., 1979) has been reinvestigated, now with the location of the tetrafluorido borate anion and improved R factors for the present model.
The FeII atom in the cation is coordinated by a cyclopentadienyl ring, two carbonyl ligands and an acetonitrile molecule displaying a three-legged piano-stool structure. Three of the four F atoms of the BF4- anion are disordered over two sites with a site occupancy factor of 0.709 (10) for the major occupied site.
It is noteworthy, that Callan et al. (1987) determined the closely related structure of dicarbonyl-(η5-cyclopentadienyl)-(N-methyl cyanido)-iron(II) tetrafluoridoborate which has a methylisocyanide molecule bonded to the iron(II) atom instead of an acetonitrile molecule as in the title compound.
Experimental
AgBF4 (0.19 g, 0.98 mmol) was added to a solution of [CpFe(CO)2]I (0.31 g, 1.02 mmol) (Fig. 1). The mixture was stirred at room temperature for 12 h. After filtration the solvent was removed in vacuo. Single crystals of the acetonitrile solvate [CpFe(CO)2(NCCH3)][BF4] were obtained by recrystallization from acetonitrile (yield: 74 mol%).
Refinement
H atoms bonded to C were refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C) or with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(Cmethyl). The methyl group was allowed to rotate but not to tip. Three of the F atoms of the BF4- anion are disordered over two sites with a site occupancy factor of 0.709 (10) for the major occupied site and were refined with isotropic displacement parameters. The B—F bond lengths and the F···F distances were restrained to be equal.
Figures
Fig. 1.
Fig. 1.
Reaction scheme for obtaining the title compound.
Fig. 2.
Fig. 2.
Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level. Only the major occupied site of the disordered BF4- anion is shown.
Crystal data
[Fe(C5H5)(C2H3N)(CO)2]BF4F(000) = 608
Mr = 304.82Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6543 reflections
a = 6.8842 (7) Åθ = 3.6–25.7°
b = 15.289 (2) ŵ = 1.30 mm1
c = 11.4353 (12) ÅT = 173 K
β = 95.192 (8)°Rod, orange
V = 1198.7 (2) Å30.33 × 0.12 × 0.12 mm
Z = 4
Data collection
Stoe IPDS II two-circle diffractometer2222 independent reflections
Radiation source: fine-focus sealed tube1976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)h = −8→8
Tmin = 0.674, Tmax = 0.860k = −18→15
6372 measured reflectionsl = −13→13
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0822P)2 + 3.3996P] where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 1.43 e Å3
45 restraintsΔρmin = −0.87 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/UeqOcc. (<1)
B10.1682 (8)0.4317 (5)0.8015 (5)0.0504 (17)
F10.0863 (6)0.3739 (3)0.8730 (4)0.0696 (11)
F20.0456 (9)0.4609 (4)0.7113 (5)0.073 (2)*0.709 (10)
F30.1922 (8)0.5136 (3)0.8728 (5)0.0584 (17)*0.709 (10)
F40.3529 (8)0.4133 (4)0.7734 (7)0.0631 (18)*0.709 (10)
F2'0.126 (3)0.3804 (14)0.6880 (14)0.122 (8)*0.291 (10)
F3'0.104 (3)0.5108 (11)0.773 (2)0.127 (9)*0.291 (10)
F4'0.3687 (15)0.4177 (9)0.8167 (15)0.056 (4)*0.291 (10)
Fe10.70458 (8)0.33865 (4)0.44357 (5)0.0232 (3)
C10.9179 (7)0.3351 (3)0.3623 (4)0.0284 (9)
O11.0553 (5)0.3298 (2)0.3141 (4)0.0424 (9)
C20.7445 (6)0.4506 (3)0.4916 (4)0.0309 (10)
O20.7644 (6)0.5205 (3)0.5253 (4)0.0477 (10)
N10.5355 (5)0.3759 (2)0.3084 (3)0.0260 (8)
C30.4383 (6)0.4036 (3)0.2304 (4)0.0268 (9)
C40.3128 (7)0.4408 (4)0.1331 (4)0.0390 (11)
H4A0.18900.45930.16130.058*
H4B0.28770.39660.07150.058*
H4C0.37760.49140.10110.058*
C110.6770 (13)0.2026 (4)0.4651 (6)0.064 (2)
H110.70060.16070.40660.076*
C120.8106 (10)0.2334 (5)0.5468 (7)0.068 (2)
H120.94320.21550.55660.081*
C130.7255 (14)0.2963 (5)0.6162 (5)0.075 (2)
H130.78770.32930.67930.090*
C140.5213 (12)0.2996 (4)0.5701 (7)0.071 (2)
H140.42160.33520.59730.085*
C150.5027 (10)0.2403 (5)0.4787 (6)0.0620 (19)
H150.38460.22780.43210.074*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
B10.034 (3)0.071 (5)0.046 (3)0.005 (3)0.001 (3)0.031 (3)
F10.083 (3)0.062 (2)0.066 (2)−0.025 (2)0.020 (2)0.008 (2)
Fe10.0228 (4)0.0248 (4)0.0217 (4)0.0011 (2)0.0004 (2)0.0004 (2)
C10.027 (2)0.024 (2)0.033 (2)−0.0026 (16)0.0002 (19)−0.0044 (17)
O10.0292 (18)0.043 (2)0.057 (2)−0.0040 (14)0.0131 (17)−0.0086 (17)
C20.025 (2)0.036 (3)0.031 (2)0.0032 (18)−0.0018 (17)−0.006 (2)
O20.046 (2)0.039 (2)0.056 (2)0.0030 (17)−0.0039 (17)−0.0191 (18)
N10.0210 (16)0.0306 (19)0.0264 (18)−0.0055 (15)0.0028 (15)−0.0026 (15)
C30.0224 (19)0.033 (2)0.025 (2)−0.0022 (17)0.0016 (17)−0.0002 (18)
C40.036 (2)0.048 (3)0.031 (2)0.005 (2)−0.006 (2)0.004 (2)
C110.115 (6)0.030 (3)0.049 (4)−0.005 (3)0.028 (4)0.006 (3)
C120.052 (4)0.074 (5)0.080 (5)0.023 (3)0.016 (4)0.049 (4)
C130.132 (7)0.065 (4)0.024 (3)−0.034 (5)−0.012 (3)0.017 (3)
C140.091 (5)0.049 (4)0.084 (5)0.027 (4)0.065 (5)0.034 (4)
C150.060 (4)0.062 (4)0.061 (4)−0.029 (3)−0.008 (3)0.033 (3)
Geometric parameters (Å, º)
B1—F3'1.319 (14)C2—O21.140 (6)
B1—F21.348 (8)N1—C31.147 (6)
B1—F11.361 (7)C3—C41.461 (6)
B1—F41.369 (8)C4—H4A0.9800
B1—F4'1.392 (11)C4—H4B0.9800
B1—F31.496 (9)C4—H4C0.9800
B1—F2'1.521 (14)C11—C121.336 (11)
Fe1—C11.809 (5)C11—C151.353 (11)
Fe1—C21.811 (5)C11—H110.9500
Fe1—N11.935 (4)C12—C131.407 (11)
Fe1—C132.070 (6)C12—H120.9500
Fe1—C122.088 (6)C13—C141.457 (12)
Fe1—C142.091 (5)C13—H130.9500
Fe1—C112.106 (6)C14—C151.381 (11)
Fe1—C152.110 (6)C14—H140.9500
C1—O11.140 (6)C15—H150.9500
F3'—B1—F1126.5 (11)O1—C1—Fe1177.0 (4)
F2—B1—F1114.2 (5)O2—C2—Fe1177.2 (4)
F2—B1—F4114.8 (6)C3—N1—Fe1175.4 (4)
F1—B1—F4116.9 (6)N1—C3—C4178.5 (5)
F3'—B1—F4'118.7 (12)C3—C4—H4A109.5
F1—B1—F4'106.6 (8)C3—C4—H4B109.5
F2—B1—F399.8 (5)H4A—C4—H4B109.5
F1—B1—F3104.3 (5)C3—C4—H4C109.5
F4—B1—F3103.9 (6)H4A—C4—H4C109.5
F3'—B1—F2'103.2 (13)H4B—C4—H4C109.5
F1—B1—F2'96.9 (10)C12—C11—C15109.3 (6)
F4'—B1—F2'98.0 (11)C12—C11—Fe170.7 (4)
C1—Fe1—C294.4 (2)C15—C11—Fe171.5 (4)
C1—Fe1—N193.21 (18)C12—C11—H11125.4
C2—Fe1—N191.61 (19)C15—C11—H11125.4
C1—Fe1—C13119.4 (3)Fe1—C11—H11124.1
C2—Fe1—C1390.6 (3)C11—C12—C13109.9 (6)
N1—Fe1—C13147.0 (3)C11—C12—Fe172.1 (4)
C1—Fe1—C1290.5 (2)C13—C12—Fe169.5 (4)
C2—Fe1—C12121.4 (3)C11—C12—H12125.1
N1—Fe1—C12146.4 (3)C13—C12—H12125.1
C13—Fe1—C1239.6 (3)Fe1—C12—H12124.8
C1—Fe1—C14156.4 (2)C12—C13—C14104.9 (6)
C2—Fe1—C1498.3 (3)C12—C13—Fe170.9 (3)
N1—Fe1—C14106.2 (3)C14—C13—Fe170.3 (3)
C13—Fe1—C1441.0 (3)C12—C13—H13127.6
C12—Fe1—C1465.9 (3)C14—C13—H13127.6
C1—Fe1—C1196.7 (2)Fe1—C13—H13123.1
C2—Fe1—C11155.7 (2)C15—C14—C13105.7 (6)
N1—Fe1—C11109.3 (3)C15—C14—Fe171.6 (3)
C13—Fe1—C1165.1 (3)C13—C14—Fe168.7 (3)
C12—Fe1—C1137.2 (3)C15—C14—H14127.1
C14—Fe1—C1164.6 (3)C13—C14—H14127.1
C1—Fe1—C15131.0 (3)Fe1—C14—H14124.2
C2—Fe1—C15134.4 (3)C11—C15—C14110.2 (7)
N1—Fe1—C1590.2 (2)C11—C15—Fe171.1 (4)
C13—Fe1—C1565.5 (3)C14—C15—Fe170.1 (4)
C12—Fe1—C1563.0 (3)C11—C15—H15124.9
C14—Fe1—C1538.4 (3)C14—C15—H15124.9
C11—Fe1—C1537.4 (3)Fe1—C15—H15125.5
C1—Fe1—C11—C1282.0 (4)N1—Fe1—C13—C148.0 (7)
C2—Fe1—C11—C12−34.5 (9)C12—Fe1—C13—C14−114.4 (6)
N1—Fe1—C11—C12177.7 (4)C11—Fe1—C13—C14−79.2 (5)
C13—Fe1—C11—C12−37.4 (5)C15—Fe1—C13—C14−37.9 (4)
C14—Fe1—C11—C12−82.9 (5)C12—C13—C14—C15−0.4 (6)
C15—Fe1—C11—C12−119.1 (6)Fe1—C13—C14—C1562.5 (4)
C1—Fe1—C11—C15−158.9 (4)C12—C13—C14—Fe1−62.9 (4)
C2—Fe1—C11—C1584.6 (8)C1—Fe1—C14—C15−75.5 (10)
N1—Fe1—C11—C15−63.1 (4)C2—Fe1—C14—C15162.8 (4)
C13—Fe1—C11—C1581.7 (5)N1—Fe1—C14—C1568.7 (4)
C12—Fe1—C11—C15119.1 (6)C13—Fe1—C14—C15−115.8 (6)
C14—Fe1—C11—C1536.2 (5)C12—Fe1—C14—C15−76.4 (5)
C15—C11—C12—C13−1.8 (7)C11—Fe1—C14—C15−35.3 (4)
Fe1—C11—C12—C1359.5 (5)C1—Fe1—C14—C1340.4 (10)
C15—C11—C12—Fe1−61.4 (4)C2—Fe1—C14—C13−81.3 (4)
C1—Fe1—C12—C11−100.4 (4)N1—Fe1—C14—C13−175.4 (4)
C2—Fe1—C12—C11164.1 (4)C12—Fe1—C14—C1339.5 (5)
N1—Fe1—C12—C11−3.8 (7)C11—Fe1—C14—C1380.5 (5)
C13—Fe1—C12—C11120.1 (6)C15—Fe1—C14—C13115.8 (6)
C14—Fe1—C12—C1179.2 (5)C12—C11—C15—C141.6 (7)
C15—Fe1—C12—C1136.6 (4)Fe1—C11—C15—C14−59.3 (4)
C1—Fe1—C12—C13139.5 (5)C12—C11—C15—Fe160.9 (5)
C2—Fe1—C12—C1344.0 (5)C13—C14—C15—C11−0.6 (7)
N1—Fe1—C12—C13−124.0 (5)Fe1—C14—C15—C1160.0 (4)
C14—Fe1—C12—C13−40.9 (5)C13—C14—C15—Fe1−60.6 (4)
C11—Fe1—C12—C13−120.1 (6)C1—Fe1—C15—C1128.2 (5)
C15—Fe1—C12—C13−83.5 (5)C2—Fe1—C15—C11−145.0 (4)
C11—C12—C13—C141.4 (7)N1—Fe1—C15—C11122.6 (4)
Fe1—C12—C13—C1462.5 (4)C13—Fe1—C15—C11−80.4 (5)
C11—C12—C13—Fe1−61.1 (5)C12—Fe1—C15—C11−36.3 (4)
C1—Fe1—C13—C12−48.2 (5)C14—Fe1—C15—C11−120.8 (6)
C2—Fe1—C13—C12−143.6 (5)C1—Fe1—C15—C14149.1 (4)
N1—Fe1—C13—C12122.5 (6)C2—Fe1—C15—C14−24.1 (6)
C14—Fe1—C13—C12114.4 (6)N1—Fe1—C15—C14−116.6 (4)
C11—Fe1—C13—C1235.2 (5)C13—Fe1—C15—C1440.4 (5)
C15—Fe1—C13—C1276.5 (5)C12—Fe1—C15—C1484.5 (5)
C1—Fe1—C13—C14−162.7 (4)C11—Fe1—C15—C14120.8 (6)
C2—Fe1—C13—C14102.0 (4)
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2643).
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Callan, B., Manning, A. R. & Stephens, F. S. (1987). J. Organomet. Chem. 331, 357–377.
  • Fadel, F., Weidenhammer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98–106.
  • Kückmann, T. I., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989–2003.
  • Kückmann, T. I., Hermsen, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chem. 44, 3449–3458. [PubMed]
  • Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Organometallics, 27, 3272–3278.
  • Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2010). Eur. J. Inorg. Chem. pp. 468–475.
  • Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.
  • Sänger, I., Kückmann, T. I., Dornhaus, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Dalton Trans. 41, 6671–6676. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography